预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共29页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

人教版九年级数学上册第二十四章圆定向练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分满分100分考试时间90分钟2、答卷前考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置如需改动先划掉原来的答案然后再写上新的答案;不准使用涂改液、胶带纸、修正带不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题每小题3分共计30分)1、下列图形为正多边形的是()A.B.C.D.2、如图AB是的直径点B是弧CD的中点AB交弦CD于E且则()A.2B.3C.4D.53、已知平面内有和点若半径为线段则直线与的位置关系为()A.相离B.相交C.相切D.相交或相切4、如图AB是⊙O的弦等边三角形OCD的边CD与⊙O相切于点P连接OAOBOPAD.若∠COD+∠AOB=180°AB=6则AD的长是()A.6B.3C.2D.5、如图正三角形PMN的顶点分别是正六边形ABCDEF三边的中点则三角形PMN与六边形ABCDEF的面积之比()A.1:2B.1:3C.2:3D.3:86、已知圆的半径为扇形的圆心角为则扇形的面积为()A.B.C.D.7、如图正方形的边长为4以点为圆心为半径画圆弧得到扇形(阴影部分点在对角线上).若扇形正好是一个圆锥的侧面展开图则该圆锥的底面圆的半径是()A.B.1C.D.8、如图拱桥可以近似地看作直径为250m的圆弧桥拱和路面之间用数根钢索垂直相连其正下方的路面AB长度为150m那么这些钢索中最长的一根的长度为()A.50mB.40mC.30mD.25m9、如图AB为的直径CD为上的两点若则的度数为()A.B.C.D.10、如图点ABCDE是⊙O上5个点若AB=AO=2将弧CD沿弦CD翻折使其恰好经过点O此时图中阴影部分恰好形成一个“钻戒型”的轴对称图形则“钻戒型”(阴影部分)的面积为()A.B.4π﹣3C.4π﹣4D.第Ⅱ卷(非选择题70分)二、填空题(5小题每小题4分共计20分)1、如图在四边形中.若则的内切圆面积________(结果保留).2、如图所示AB、AC为⊙O的两条弦延长CA到点DAD=AB若∠ADB=35°则∠BOC=________.3、如图圆锥的母线长为10cm高为8cm则该圆锥的侧面展开图(扇形)的弧长为_____cm.(结果用π表示)4、如图直线、相交于点半径为1cm的⊙的圆心在直线上且与点的距离为8cm如果⊙以2cm/s的速度由向的方向运动那么_________秒后⊙与直线相切.5、如图圆锥的母线长OA=6底面圆的半径为一只小虫在圆线底面的点A处绕圆锥侧面一周又回到点A处则小虫所走的最短路程为___________(结果保留根号)三、解答题(5小题每小题10分共计50分)1、下列每个正方形的边长为2求下图中阴影部分的面积.2、如图两个圆都以点O为圆心大圆的弦交小圆于两点.求证:.3、如图在△ABC中以AB为直径的⊙O交AC于点M弦交AB于点E且ME=3AE=4AM=5.(1)求证:BC是⊙O的切线;(2)求⊙O的直径AB的长度.4、在下列正多边形中是中心定义:为相应正多边形的基本三角形.如图1是正三角形的基本三角形;如图2是正方形的基本三角形;如图3为正边形…的基本三角形.将基本绕点逆时针旋转角度得.(1)若线段与线段相交点则:图1中的取值范围是________;图3中的取值范围是________;(2)在图1中求证(3)在图2中正方形边长为4边上的一点旋转后的对应点为若有最小值时求出该最小值及此时的长度;(4)如图3当时直接写出的值.5、如图在直角梯形ABCD中AD∥BC∠ABC=90°AB=12cmAD=8cmBC=22cmAB为⊙O的直径动点P从点A开始沿AD边向点D以1cm/s的速度运动动点Q从点C开始沿CB边向点B以2cm/s的速度运动.P、Q分别从点A、C同时出发当其中一个动点到达端点时另一个动点也随之停止运动设运动时间为t(s).(1)当t为何值时四边形PQCD为平行四边形?(2)当t为何值时PQ与⊙O相切?-参考答案-一、单选题1、D【解析】【分析】根据正多边形的定义:各个角都相等各条边都相等的多边形叫做正多边形可得答案.【详解】根据正多边形的定义得到D中图形是正五边形.故选D.【考点】本题考查了正多边形关键是掌握正多边形的定义.2、C【解析】【分析】是的直径点是弧的中点从而可知然后利用勾股定理即可求出的长度.【详解】解:设半径为连接是的直径点是弧的中点由垂径定理可知:且点是的中点由勾股定理可知:由勾股定理可知:解得:故选:C.【考点】本题考查垂径定理