基于先验生成对抗网络的图像去雾方法及模型.pdf
是飞****文章
亲,该文档总共19页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
基于先验生成对抗网络的图像去雾方法及模型.pdf
本发明公开了基于先验生成对抗网络的图像去雾方法,包括:收集成对的有雾图像和无雾图像构建训练集;对训练集的图像进行预处理,获得四通道的图像,所述四通道包括R、G、B三通道以及滤波后保留有高频与低频信息的第四通道;取四通道有雾图像的浅层特征并进行下采样,得到深层特征;对深层特征进行上采样以获取重构上采样特征,上采样过程中通过跳跃连接将上采样之前的图像特征融入重构上采样特征,重构出四通道的去雾图像;根据图像生成器损失和辨别器损失在训练集上训练所述图像去雾模型;图像生成器损失包括有雾图像与去雾图像之间的重建损失,
基于生成对抗网络的图像去雾算法.docx
基于生成对抗网络的图像去雾算法基于生成对抗网络的图像去雾算法摘要:图像去雾是计算机视觉领域的一个重要研究方向,旨在恢复受雾污染影响的图像的清晰度和细节。近年来,生成对抗网络(GAN)已经取得了显著的进展,并被应用于各种图像处理任务中。本文提出了一种基于生成对抗网络的图像去雾算法,该算法结合了生成器网络和判别器网络,通过对抗训练的方式实现图像去雾。实验结果表明,所提算法在去除雾霾的同时能够保持图像更多的细节和清晰度。关键词:图像去雾、生成对抗网络、生成器、判别器、对抗训练1.引言近年来,图像去雾问题引起了广
基于条件生成对抗网络的图像去雾算法.docx
基于条件生成对抗网络的图像去雾算法基于条件生成对抗网络的图像去雾算法摘要:去雾是计算机视觉中一个重要的任务,目的是恢复在雾天环境中被雾粒子遮挡的图像的清晰度和细节。传统的去雾方法通常基于图像处理和统计模型,然而,这些方法往往不能很好地处理复杂场景或丢失细节信息。为了克服这些问题,本文提出了一种基于条件生成对抗网络的图像去雾算法。该算法利用生成对抗网络的强大的学习和生成能力,通过生成器网络和判别器网络之间的博弈训练,逐渐提高去雾网络的能力,从而恢复出清晰的图像。实验结果表明,本文提出的算法在去雾任务上取得了
基于条件生成对抗网络的图像去雾算法.docx
基于条件生成对抗网络的图像去雾算法引言在视觉处理领域,图像去雾一直是一个重要的研究方向。雾霾天气和干燥环境等条件使得图像中的细节和轮廓变得模糊,导致图像的质量下降和色彩失真。因此,图像去雾算法能够更好的还原实景,提高图像的品质。近年来,基于深度学习的图像去雾方法逐渐受到关注,其中基于条件生成对抗网络的图像去雾算法受到广泛关注和研究。本文将着重介绍基于条件生成对抗网络的图像去雾算法的研究方法和实现原理。方法介绍基于条件生成对抗网络(ConditionalGenerativeAdversarialNetwor
基于改进生成式对抗网络的图像去雾算法研究.docx
基于改进生成式对抗网络的图像去雾算法研究标题:基于改进生成式对抗网络的图像去雾算法研究摘要:图像中的雾霾影响了图像的质量和清晰度,给图像处理任务带来了困难。为了解决这一问题,本文提出了一种基于改进生成式对抗网络的图像去雾算法。首先,通过分析图像去雾问题,我们可以将其视为图像增强任务,即从含有雾霾的输入图像中恢复出无雾霾的图像。其次,我们采用改进的生成式对抗网络结构,结合感知损失函数和多尺度特征提取模块,提高了去雾质量和生成效率。实验结果表明,该算法能够有效去除图像中的雾霾,并产生高质量的无雾图像。关键词: