预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共29页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

试卷试卷人教版九年级数学上册第二十四章圆单元测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分满分100分考试时间90分钟2、答卷前考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置如需改动先划掉原来的答案然后再写上新的答案;不准使用涂改液、胶带纸、修正带不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题每小题3分共计30分)1、如图⊙O的半径为5弦AB=8P是弦AB上的一个动点(不与AB重合)下列符合条件的OP的值是()A.6.5B.5.5C.3.5D.2.52、如图点ABCDE是⊙O上5个点若AB=AO=2将弧CD沿弦CD翻折使其恰好经过点O此时图中阴影部分恰好形成一个“钻戒型”的轴对称图形则“钻戒型”(阴影部分)的面积为()A.B.4π﹣3C.4π﹣4D.3、已知:如图PAPB分别与⊙O相切于AB点C为⊙O上一点∠ACB=65°则∠APB等于()A.65°B.50°C.45°D.40°4、如图是⊙的直径点C为圆上一点的平分线交于点D则⊙的直径为()A.B.C.1D.25、已知:如图AB是⊙O的直径点P在BA的延长线上弦CD交AB于E连接OD、PC、BC∠AOD=2∠ABC∠P=∠D过E作弦GF⊥BC交圆与G、F两点连接CF、BG.则下列结论:①CD⊥AB;②PC是⊙O的切线;③OD∥GF;④弦CF的弦心距等于BG.则其中正确的是()A.①②④B.③④C.①②③D.①②③④6、丁丁和当当用半径大小相同的圆形纸片分别剪成扇形(如图)做圆锥形的帽子请你判断哪个小朋友做成的帽子更高一些()A.丁丁B.当当C.一样高D.不确定7、一个商标图案如图中阴影部分在长方形中以点为圆心为半径作圆与的延长线相交于点则商标图案的面积是()A.B.C.D.8、如图圆内接正六边形的边长为4以其各边为直径作半圆则图中阴影部分的面积为()A.B.C.D.9、一个点到圆的最大距离为11cm最小距离为5cm则圆的半径为()A.16cm或6cmB.3cm或8cmC.3cmD.8cm10、如图一段公路的转弯处是一段圆弧则的展直长度为()A.3πB.6πC.9πD.12π第Ⅱ卷(非选择题70分)二、填空题(5小题每小题4分共计20分)1、如图四边形是的外切四边形且则四边形的周长为__________.2、如图已知是的直径是的切线连接交于点连接.若则的度数是_________.3、如图A、B、C、D为一个正多边形的相邻四个顶点O为正多边形的中心若∠ADB=12°则这个正多边形的边数为____________4、如图在⊙O中是⊙O的直径点是点关于的对称点是上的一动点下列结论:①;②;③;④的最小值是10.上述结论中正确的个数是_________.5、如图在Rt△ABC中∠ACB=30°⊙E为内切圆若BE=4则△BCE的面积为___________.三、解答题(5小题每小题10分共计50分)1、如图两个圆都以点O为圆心大圆的弦交小圆于两点.求证:.2、如图的两条弦(AB不是直径)点E为AB中点连接ECED.(1)直线EO与AB垂直吗?请说明理由;(2)求证:.3、已知的半径是.弦.求圆心到的距离;弦两端在圆上滑动且保持的中点在运动过程中构成什么图形请说明理由.4、已知抛物线经过点(m﹣4)交x轴于AB两点(A在B左边)交y轴于C点对于任意实数n不等式恒成立.(1)抛物线解析式;(2)在BC上方的抛物线对称轴上是否存在点D使得∠BDC=2∠BAC若有求出点D的坐标若没有请说明理由;(3)将抛物线沿x轴正方向平移一个单位把得到的图象在x轴下方的部分沿x轴向上翻折图的其余部分保持不变得到一个新的图象G若直线y=x+b与新图象G有四个交点求b的取值范围(直接写出结果即可).5、如图已知等边△ABC内接于☉OBD为内接正十二边形的一边CD=5cm求☉O的半径R.-参考答案-一、单选题1、C【解析】【分析】连接OB作OM⊥AB与M.根据垂径定理和勾股定理求出OP的取值范围即可判断.【详解】解:连接OB作OM⊥AB与M.∵OM⊥AB∴AM=BM=AB=4在直角△OBM中∵OB=5BM=4∴.∴故选:C.【考点】本题考查了垂径定理、勾股定理常把半弦长半圆心角圆心到弦距离转换到同一直角三角形中然后通过直角三角形予以求解.2、A【解析】【分析】连接CD、OE根据题意证明四边形OCED是菱形然后分别求出扇形OCD和菱形OCED以及△AOB的面积最后利用割补法求解即可.【详解】解:连接CD、OE由题意可知OC=OD=CE=ED弧=