预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共27页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

人教版九年级数学上册第二十四章圆专题练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分满分100分考试时间90分钟2、答卷前考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置如需改动先划掉原来的答案然后再写上新的答案;不准使用涂改液、胶带纸、修正带不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题每小题3分共计30分)1、在平面直角坐标系中⊙O的半径为2点A(1)与⊙O的位置关系是()A.在⊙O上B.在⊙O内C.在⊙O外D.不能确定2、如图△ABC内接于⊙O∠A=50°.E是边BC的中点连接OE并延长交⊙O于点D连接BD则∠D的大小为()A.55°B.65°C.60°D.75°3、已知:如图PAPB分别与⊙O相切于AB点C为⊙O上一点∠ACB=65°则∠APB等于()A.65°B.50°C.45°D.40°4、已知圆内接正三角形的面积为则该圆的内接正六边形的边心距是()A.B.C.D.5、在⊙O中按如下步骤作图:(1)作⊙O的直径AD;(2)以点D为圆心DO长为半径画弧交⊙O于BC两点;(3)连接DBDCABACBC.根据以上作图过程及所作图形下列四个结论中错误的是()A.∠ABD=90°B.∠BAD=∠CBDC.AD⊥BCD.AC=2CD6、如图在等腰Rt△ABC中AC=BC=点P在以斜边AB为直径的半圆上M为PC的中点.当点P沿半圆从点A运动至点B时点M运动的路径长是()A.πB.πC.πD.27、下列多边形中内角和最大的是()A.B.C.D.8、如图所示一个半径为r(r<1)的图形纸片在边长为10的正六边形内任意运动则在该六边形内这个圆形纸片不能接触到的部分面积是()A.B.C.D.9、如图在中以点为圆心为半径的圆与相交于点则的长为()A.2B.C.3D.10、下列说法:(1)长度相等的弧是等弧;(2)弦不包括直径;(3)劣弧一定比优弧短;(4)直径是圆中最长的弦.其中正确的有()A.1个B.2个C.3个D.4个第Ⅱ卷(非选择题70分)二、填空题(5小题每小题4分共计20分)1、一个圆锥的底面半径r=6高h=8则这个圆锥的侧面积是_____.2、圆锥形冰淇淋的母线长是12cm侧面积是60πcm2则底面圆的半径长等于_____.3、如图所示的扇形中C为上一点连接过C作的垂线交于点D则图中阴影部分的面积为_______.4、如图在甲以点为圆心的长为半径作圆交于点交于点阴影部分的面积为__________(结果保留).5、如图1是台湾某品牌手工蛋卷的外包装盒其截面图如图2所示盒子上方是一段圆弧(弧MN).DE为手提带的固定点DE与弧MN所在的圆相切DE=2.手提带自然下垂时最低点为C且呈抛物线形抛物线与弧MN交于点FG.若△CDE是等腰直角三角形且点CF到盒子底部AB的距离分别为1则弧MN所在的圆的半径为_____.三、解答题(5小题每小题10分共计50分)1、已知PAPB分别与⊙O相切于点AB∠APB=80°C为⊙O上一点.(1)如图①求∠ACB的大小;(2)如图②AE为⊙O的直径AE与BC相交于点D.若AB=AD求∠EAC的大小.2、在中已知⊙O经过点C且与相切于点D.(1)在图中作出⊙O;(要求:尺规作图不写作法保留作图痕迹)(2)若点D是边上的动点设⊙O与边、分别相交于点E、F求的最小值.3、如图AB为⊙O的直径C、D为⊙O上的两个点==连接AD过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)若直径AB=6求AD的长.4、如图OC为⊙O的半径弦AB⊥OC于点DOC=10CD=4求AB的长.5、如图在四边形中.是四边形内一点且.求证:(1);(2)四边形是菱形.-参考答案-一、单选题1、A【解析】【分析】根据点A的坐标求出OA=2根据点与圆的位置关系即可做出判断.【详解】解:∵点A的坐标为(1)∴由勾股定理可得:OA=又∵⊙O的半径为2∴点A在⊙O上.故选:A.【考点】本题考查了点和圆的位置关系点和圆的位置关系是由点到圆心的距离和圆的半径间的大小关系确定的:(1)当时点在圆外;(2)当时点在圆上;(3)当时点在圆内.2、B【解析】【分析】连接CD根据圆内接四边形的性质得到∠CDB=180°﹣∠A=130°根据垂径定理得到OD⊥BC求得BD=CD根据等腰三角形的性质即可得到结论.【详解】解:连接CD∵∠A=50°∴∠CDB=180°﹣∠A=130°∵E是边BC的中点∴OD⊥BC∴BD=CD∴∠ODB=∠ODC=∠BDC