预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共28页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

人教版九年级数学上册第二十四章圆定向练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分满分100分考试时间90分钟2、答卷前考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置如需改动先划掉原来的答案然后再写上新的答案;不准使用涂改液、胶带纸、修正带不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题每小题3分共计30分)1、如图四边形ABCD内接于⊙O点I是△ABC的内心∠AIC=124°点E在AD的延长线上则∠CDE的度数为()A.56°B.62°C.68°D.78°2、如图点BCD在⊙O上若∠BCD=130°则∠BOD的度数是()A.50°B.60°C.80°D.100°3、如图AB是⊙O的直径BC与⊙O相切于点BAC交⊙O于点D若∠ACB=50°则∠BOD等于()A.40°B.50°C.60°D.80°4、丁丁和当当用半径大小相同的圆形纸片分别剪成扇形(如图)做圆锥形的帽子请你判断哪个小朋友做成的帽子更高一些()A.丁丁B.当当C.一样高D.不确定5、如图拱桥可以近似地看作直径为250m的圆弧桥拱和路面之间用数根钢索垂直相连其正下方的路面AB长度为150m那么这些钢索中最长的一根的长度为()A.50mB.40mC.30mD.25m6、如图⊙O是Rt△ABC的外接圆∠ACB=90°过点C作⊙O的切线交AB的延长线于点D.设∠A=α∠D=β则()A.α﹣βB.α+β=90°C.2α+β=90°D.α+2β=90°7、下列语句错误的是()A.直径是弦B.相等的圆心角所对的弧相等C.弦的垂直平分线一定经过圆心D.平分弧的半径垂直于弧所对的弦8、如图PAPB是⊙O的切线AB是切点点C为⊙O上一点若∠ACB=70°则∠P的度数为()A.70°B.50°C.20°D.40°9、下列图形为正多边形的是()A.B.C.D.10、已知圆的半径为扇形的圆心角为则扇形的面积为()A.B.C.D.第Ⅱ卷(非选择题70分)二、填空题(5小题每小题4分共计20分)1、如图一下水管道横截面为圆形直径为100cm下雨前水面宽为60cm一场大雨过后水面宽为80cm则水位上升______cm.2、如图边长相等的正五边形和正六边形拼接在一起则∠ABC的度数为________.3、如图在⊙O中是⊙O的直径点是点关于的对称点是上的一动点下列结论:①;②;③;④的最小值是10.上述结论中正确的个数是_________.4、如图⊙O的直径AB=26弦CD⊥AB垂足为EOE:BE=5:8则CD的长为______.5、如图是四个全等的正八边形和一个正方形拼成的图案已知正方形的面积为4则一个正八边形的面积为____.三、解答题(5小题每小题10分共计50分)1、在平面直角坐标系中⊙C与x轴交于点AB且点B的坐标为(80)与y轴相切于点D(04)过点ABD的抛物线的顶点为E.(1)求圆心C的坐标与抛物线的解析式;(2)判断直线AE与⊙C的位置关系并说明理由;(3)若点MN是直线y轴上的两个动点(点M在点N的上方)且MN=1请直接写出的四边形EAMN周长的最小值.2、如图点ABCD在⊙O上=.求证:(1)AC=BD;(2)△ABE∽△DCE.3、已知:..求作:使它经过点和点并且圆心在的平分线上4、已知圆弧的半径为15厘米圆弧的长度为求圆心角的度数.5、已知四边形内接于⊙O垂足为E垂足为F交于点G连接.(1)求证:;(2)如图1若求⊙O的半径;(3)如图2连接交于点H若试判断是否为定值若是求出该定值;若不是说明理由.-参考答案-一、单选题1、C【解析】【分析】由点I是△ABC的内心知∠BAC=2∠IAC、∠ACB=2∠ICA从而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC)再利用圆内接四边形的外角等于内对角可得答案.【详解】解:∵点I是△ABC的内心∴∠BAC=2∠IAC、∠ACB=2∠ICA∵∠AIC=124°∴∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(∠IAC+∠ICA)=180°﹣2(180°﹣∠AIC)=68°又四边形ABCD内接于⊙O∴∠CDE=∠B=68°故选:C.【考点】本题主要考查三角形的内切圆与内心解题的关键是掌握三角形的内心的性质及圆内接四边形的性质.2、D【解析】【分析】首先圆上取一点A连接ABAD根据圆的内接四边形的性质即可得∠BAD+∠BCD=180°即可求得∠BAD的度数再根据圆周角的性质即可求得答案.【详解】圆上取一点A连接ABAD∵点A、BCD在⊙O上∠BCD=130°∴∠BAD=50°∴∠BOD=100°.