预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共30页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

人教版九年级数学上册第二十四章圆同步训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分满分100分考试时间90分钟2、答卷前考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置如需改动先划掉原来的答案然后再写上新的答案;不准使用涂改液、胶带纸、修正带不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题每小题3分共计30分)1、如图是的直径若则的度数是()A.32°B.60°C.68°D.64°2、“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题“今有圆材埋在壁中不知大小以锯锯之深一寸锯道长一尺问径几何?”用现在的数学语言表述是:如图所示CD为⊙O的直径弦AB⊥CD垂足为ECE为1寸AB为10寸求直径CD的长.依题意CD长为()A.寸B.13寸C.25寸D.26寸3、如图所示MN为⊙O的弦∠N=52°则∠MON的度数为()A.38°B.52°C.76°D.104°4、已知⊙O的半径为4点O到直线m的距离为d若直线m与⊙O公共点的个数为2个则d可取()A.5B.4.5C.4D.05、如图PAPB是⊙O的切线AB是切点点C为⊙O上一点若∠ACB=70°则∠P的度数为()A.70°B.50°C.20°D.40°6、如图AC是⊙O的直径弦AB//CD若∠BAC=32°则∠AOD等于()A.64°B.48°C.32°D.76°7、如图在中cmcm.是边上的一个动点连接过点作于连接在点变化的过程中线段的最小值是()A.1B.C.2D.8、丁丁和当当用半径大小相同的圆形纸片分别剪成扇形(如图)做圆锥形的帽子请你判断哪个小朋友做成的帽子更高一些()A.丁丁B.当当C.一样高D.不确定9、已知圆的半径为扇形的圆心角为则扇形的面积为()A.B.C.D.10、已知点在上.则下列命题为真命题的是()A.若半径平分弦.则四边形是平行四边形B.若四边形是平行四边形.则C.若.则弦平分半径D.若弦平分半径.则半径平分弦第Ⅱ卷(非选择题70分)二、填空题(5小题每小题4分共计20分)1、如图已知是的直径且弦点是弧上的点连接、若则的长为______.2、用反证法证明:“如果两条直线都和第三条直线平行那么这两条直线也互相平行”.第一步应假设:______.3、已知在平面直角坐标系中点的坐标为是抛物线对称轴上的一个动点.小明经探究发现:当的值确定时抛物线的对称轴上能使为直角三角形的点的个数也随之确定.若抛物线的对称轴上存在3个不同的点使为直角三角形则的值是____.4、如图正方形ABCD边长为4点P和点Q在正方形的边上运动且PQ=4若点P从点B出发沿B→C→D→A的路线向点A运动到点A停止运动;点Q从点A出发沿A→B→C→D的路线向点D运动到达点D停止运动.它们同时出发且运动速度相同则在运动过程中PQ的中点O所经过的路径长为_____.5、如图所示的扇形中C为上一点连接过C作的垂线交于点D则图中阴影部分的面积为_______.三、解答题(5小题每小题10分共计50分)1、下列每个正方形的边长为2求下图中阴影部分的面积.2、如图AB为⊙O的直径C、D为⊙O上的两个点==连接AD过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)若直径AB=6求AD的长.3、在下列正多边形中是中心定义:为相应正多边形的基本三角形.如图1是正三角形的基本三角形;如图2是正方形的基本三角形;如图3为正边形…的基本三角形.将基本绕点逆时针旋转角度得.(1)若线段与线段相交点则:图1中的取值范围是________;图3中的取值范围是________;(2)在图1中求证(3)在图2中正方形边长为4边上的一点旋转后的对应点为若有最小值时求出该最小值及此时的长度;(4)如图3当时直接写出的值.4、如图为⊙的直径过圆上一点作⊙的切线交的延长线与点过点作交于点连接.(1)直线与⊙相切吗?并说明理由;(2)若求的长.5、如图在平面直角坐标系中抛物线过点与y轴交于点C连接BC点N是第一象限抛物线上一点连接NA交y轴于点E.(1)求抛物线的解析式;(2)求线段AN的长;(3)若点M在第三象限抛物线上连接MN则这时点M的坐标为______(直接写出结果).-参考答案-一、单选题1、D【解析】【分析】根据已知条件和圆心角、弧、弦的关系可知然后根据对顶角相等即可求解.【详解】.故选:D.【考点】本题主要考查圆心角、弧、弦的关系、对顶角相等较简单掌握基本概念是解题关键.2、D【解析】【分析】连结AO根据垂径定理可得:然后设⊙O半径为R则OE=R-