预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共26页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

人教版九年级数学上册第二十四章圆专题攻克考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分满分100分考试时间90分钟2、答卷前考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置如需改动先划掉原来的答案然后再写上新的答案;不准使用涂改液、胶带纸、修正带不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题每小题3分共计30分)1、如图在▱ABCD中为的直径⊙O和相切于点E和相交于点F已知则的长为()A.B.C.D.22、如图五边形是⊙O的内接正五边形则的度数为()A.B.C.D.3、如图所示一个半径为r(r<1)的图形纸片在边长为10的正六边形内任意运动则在该六边形内这个圆形纸片不能接触到的部分面积是()A.B.C.D.4、已知点在半径为8的外则()A.B.C.D.5、在⊙O中按如下步骤作图:(1)作⊙O的直径AD;(2)以点D为圆心DO长为半径画弧交⊙O于BC两点;(3)连接DBDCABACBC.根据以上作图过程及所作图形下列四个结论中错误的是()A.∠ABD=90°B.∠BAD=∠CBDC.AD⊥BCD.AC=2CD6、往直径为的圆柱形容器内装入一些水以后截面如图所示若水面宽则水的最大深度为()A.B.C.D.7、如图1一个扇形纸片的圆心角为90°半径为6.如图2将这张扇形纸片折叠使点A与点O恰好重合折痕为CD图中阴影为重合部分则阴影部分的面积为()A.6π﹣B.6π﹣9C.12π﹣D.8、在平面直角坐标系中⊙O的半径为2点A(1)与⊙O的位置关系是()A.在⊙O上B.在⊙O内C.在⊙O外D.不能确定9、已知一个三角形的三边长分别为5、7、8则其内切圆的半径为()A.B.C.D.10、如图⊙O的直径垂直于弦垂足为.若则的长是()A.B.C.D.第Ⅱ卷(非选择题70分)二、填空题(5小题每小题4分共计20分)1、如图从一块半径为的圆形铁皮上剪出一个圆周角为120°的扇形如果将剪下来的扇形围成一个圆锥则该圆锥的底面圆的半径为_________.2、如图圆锥的母线长为10cm高为8cm则该圆锥的侧面展开图(扇形)的弧长为_____cm.(结果用π表示)3、如图AB为圆O的切线点A为切点OB交圆O于点C点D在圆O上连接AD、CD、OA若∠ADC=25°则∠B的度数为____.4、如图将三角形AOC绕点O顺时针旋转120°得三角形BOD已知OA=4OC=1那么图中阴影部分的面积为_____.(结果保留π)5、如图在正六边形ABCDEF中分别以CF为圆心以边长为半径作弧图中阴影部分的面积为24π则正六边形的边长为_____.三、解答题(5小题每小题10分共计50分)1、已知四边形内接于⊙O垂足为E垂足为F交于点G连接.(1)求证:;(2)如图1若求⊙O的半径;(3)如图2连接交于点H若试判断是否为定值若是求出该定值;若不是说明理由.2、如图比较与的长度并证明你的结论.3、如图在中以为直径的⊙与交于点连接.(1)求证:;(2)若⊙与相切求的度数;(3)用无刻度的直尺和圆规作出劣弧的中点.(不写作法保留作图痕迹)4、用反证法证明:一条线段只有一个中点.5、如图PA、PB分别切⊙O于A、B连接PO与⊙O相交于C连接AC、BC求证:AC=BC.-参考答案-一、单选题1、C【解析】【分析】首先求出圆心角∠EOF的度数再根据弧长公式即可解决问题.【详解】解:如图连接OE、OF∵CD是⊙O的切线∴OE⊥CD∴∠OED=90°∵四边形ABCD是平行四边形∠C=60°∴∠A=∠C=60°∠D=120°∵OA=OF∴∠A=∠OFA=60°∴∠DFO=120°∴∠EOF=360°-∠D-∠DFO-∠DEO=30°∴的长.故选:C.【考点】本题考查切线的性质、平行四边形的性质、弧长公式等知识解题的关键是求出圆心角的度数记住弧长公式.2、D【解析】【分析】先根据正五边形的内角和求出每个内角再根据等边对等角得出∠ABE=∠AEB然后利用三角形内角和求出∠ABE=即可.【详解】解:∵五边形是⊙O的内接正五边形∴∠A=∠ABC=AB=AE∴∠ABE=∠AEB∴∠ABE=∴.故选:D.【考点】本题考查圆内接正五边形的性质等腰三角形性质三角形内角和公式角的和差计算掌握圆内接正五边形的性质等腰三角形性质三角形内角和公式角的和差计算是解题关键.3、C【解析】【分析】当运动到正六边形的角上时圆与两边的切点分别为连接根据正六边形的性质可知故再由锐角三角函数的定义用表示出的长可知圆形纸片不能接触到的部分的面积由此可得出结论.【详解】解:如图所示连