预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共31页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

人教版九年级数学上册第二十四章圆章节测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分满分100分考试时间90分钟2、答卷前考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置如需改动先划掉原来的答案然后再写上新的答案;不准使用涂改液、胶带纸、修正带不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题每小题3分共计30分)1、往直径为的圆柱形容器内装入一些水以后截面如图所示若水面宽则水的最大深度为()A.B.C.D.2、以原点O为圆心的圆交x轴于A、B两点交y轴的正半轴于点CD为第一象限内⊙O上的一点若∠DAB=25°则∠OCD=().A.50°B.40°C.70°D.30°3、在⊙O中按如下步骤作图:(1)作⊙O的直径AD;(2)以点D为圆心DO长为半径画弧交⊙O于BC两点;(3)连接DBDCABACBC.根据以上作图过程及所作图形下列四个结论中错误的是()A.∠ABD=90°B.∠BAD=∠CBDC.AD⊥BCD.AC=2CD4、如图在中以点为圆心为半径的圆与所在直线的位置关系是()A.相交B.相离C.相切D.无法判断5、已知一个三角形的三边长分别为5、7、8则其内切圆的半径为()A.B.C.D.6、下列语句错误的是()A.直径是弦B.相等的圆心角所对的弧相等C.弦的垂直平分线一定经过圆心D.平分弧的半径垂直于弧所对的弦7、如图⊙O是Rt△ABC的外接圆∠ACB=90°过点C作⊙O的切线交AB的延长线于点D.设∠A=α∠D=β则()A.α﹣βB.α+β=90°C.2α+β=90°D.α+2β=90°8、如图在▱ABCD中为的直径⊙O和相切于点E和相交于点F已知则的长为()A.B.C.D.29、如图是的内接三角形是直径则的长为()A.4B.C.D.10、“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题“今有圆材埋在壁中不知大小以锯锯之深一寸锯道长一尺问径几何?”用现在的数学语言表述是:如图所示CD为⊙O的直径弦AB⊥CD垂足为ECE为1寸AB为10寸求直径CD的长.依题意CD长为()A.寸B.13寸C.25寸D.26寸第Ⅱ卷(非选择题70分)二、填空题(5小题每小题4分共计20分)1、如图所示的网格由边长为个单位长度的小正方形组成点、、、在直角坐标系中的坐标分别为则内心的坐标为______.2、如图AB是⊙O的弦点C在过点B的切线上且OC⊥OAOC交AB于点P已知∠OAB=22°则∠OCB=__________.3、某圆的周长是12.56米那么它的半径是______________面积是__________.4、如图在甲以点为圆心的长为半径作圆交于点交于点阴影部分的面积为__________(结果保留).5、如图已知是的直径且弦点是弧上的点连接、若则的长为______.三、解答题(5小题每小题10分共计50分)1、在中已知⊙O经过点C且与相切于点D.(1)在图中作出⊙O;(要求:尺规作图不写作法保留作图痕迹)(2)若点D是边上的动点设⊙O与边、分别相交于点E、F求的最小值.2、如图OC为⊙O的半径弦AB⊥OC于点DOC=10CD=4求AB的长.3、已知正方形ABCD中M、N分别为AD边上的两点连接BM、CN并延长交于一点H连接AHE为BM上一点连接AE、CE∠ECH+∠MNH=90°.(1)如图1若E为BM的中点且DM=3AM求线段AB的长.(2)如图2若点F为BE中点点G为CF延长线上一点且EG//BCCE=GE求证:.(3)如图3在(1)的条件下点P为线段AD上一动点连接BP作CQ⊥BP于Q将△BCQ沿BC翻折得到△BCl点K、R分别为线段BC、Bl上两点且BI=3RIBC=4BK连接CR、IK交于点T连接BT直接写出△BCT面积的最大值.4、如图在Rt△ABC中∠C=90°BD平分∠ABC点O在AB上以点O为圆心OB为半径的圆经过点D交BC于点E(1)求证:AC是⊙O的切线;(2)若OB=2CD=求图中阴影部分的面积(结果保留).5、如图四边形ABCD是平行四边形点ABD均在圆上.请仅用无刻度的直尺分别下列要求画图.(1)在图①中若AB是直径CD与圆相切画出圆心;(2)在图②中若CBCD均与圆相切画出圆心.-参考答案-一、单选题1、C【解析】【分析】过点O作OD⊥AB于D交⊙O于E连接OA根据垂径定理即可求得AD的长又由⊙O的直径为求得OA的长然后根据勾股定理即可求得OD的长进而求得油的最大深度的长.【详解】解:过点O作OD⊥AB于D交⊙O于E连接OA由垂径定理得:∵⊙O的直径为∴在中由勾股定理得