预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共11页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

用心爱心专心115号编辑 高三物理动量考点例析(二) 一.本周教学内容: 动量考点例析(二) 问题6:会用动量守恒定律解“人船模型”问题 两个物体均处于静止,当两个物体存在相互作用而不受外力作用时,系统动量守恒。这类问题的特点:两物体同时运动,同时停止。 [例16]载人气球原静止于高h的高空,气球质量为M,人的质量为m,若人沿绳梯滑至地面,则绳梯至少为多长? 分析与解:气球和人原静止于空中,说明系统所受合力为零,故人下滑过程中系统动量守恒。人着地时,绳梯至少应触及地面,若设绳梯长为L,人沿绳梯滑至地面的时间为t,由动量守恒定律有:,解得。 [例17]如图7所示,质量为M的车静止在光滑水平面上,车右侧内壁固定有发射装置。车左侧内壁固定有沙袋。发射器口到沙袋的距离为d,把质量为m的弹丸最终射入沙袋中,这一过程中车移动的距离是_______。 图7 分析与解:本题可把子弹看作“人”,把车看作“船”,这样就可以用“人船模型”来求解。,解得。 [例18]质量为M、长为L的船静止在静水中,船头及船尾各站着质量分别为m1及m2的人,当两人互换位置后,船的位移有多大? 分析与解:利用“人船模型”易求得船的位移大小为:。 提示:若m1>m2,本题可把(m1-m2)等效为一个人,把(M+2m2)看作船,再利用人船模型进行分析求解较简便。 问题7:会分析求解“三体二次作用过程”问题 所谓“三体二次作用”问题是指系统由三个物体组成,但这三个物体间存在二次不同的相互作用过程。解答这类问题必须弄清这二次相互作用过程的特点,有哪几个物体参加?是短暂作用过程还是持续作用过程?各个过程遵守什么规律?弄清上述问题,就可以对不同的物理过程选择恰当的规律进行列式求解。 [例19]光滑的水平面上,用弹簧相连的质量均为2kg的A、B两物块都以V0=6m/s的速度向右运动,弹簧处于原长,质量为4kg的物块C静止在前方,如图8所示。B与C碰撞后二者粘在一起运动,在以后的运动中,当弹簧的弹性势能达到最大为J时,物块A的速度是m/s。 分析与解:本题是一个“三体二次作用”问题:“三体”为A、B、C三物块。“二次作用”过程为第一次是B、C二物块发生短时作用,而A不参加,这过程动量守恒而机械能不守恒;第二次是B、C二物块作为一整体与A物块发生持续作用,这过程动量守恒机械能也守恒。 对于第一次B、C二物块发生短时作用过程,设B、C二物块发生短时作用后的共同速度为VBC,则据动量守恒定律得: (1) 对于第二次B、C二物块作为一整体与A物块发生持续作用,设发生持续作用后的共同速度为V,则据动量守恒定律和机械能守恒定律得: mAV0+(2) (3) 由式(1)、(2)、(3)可得:当弹簧的弹性势能达到最大为EP=12J时,物块A的速度V=3m/s。 [例20]如图9所示为三块质量均为m,长度均为L的木块。木块1和木块2重叠放置在光滑的水平桌面上,木块3沿光滑水平桌面运动并与叠放在下面的木块2发生碰撞后粘合在一起,如果要求碰后原来叠放在上面的木块1完全移到木块3上,并且不会从木块3上掉下,木块3碰撞前的动能应满足什么条件?设木块之间的动摩擦因数为。 分析与解:设第3块木块的初速度为V0,对于3、2两木块的系统,设碰撞后的速度为V1,据动量守恒定律得:mV0=2mV1① 对于3、2整体与1组成的系统,设共同速度为V2,则据动量守恒定律得: 2mV1=3mV2② (1)第1块木块恰好运动到第3块上,首尾相齐,则据能量守恒有: ③ 由①②③联立方程得:Ek3=6μmgL④ (2)第1块运动到第3块木块上,恰好不掉下,据能量守恒定律得: ⑤ 由①②⑤联立方程得:Ek3=9μmgL故: 问题8:会分析求解“二体三次作用过程”问题 所谓“二体三次作用”问题是指系统由两个物体组成,但这两个物体存在三次不同的相互作用过程。求解这类问题的关键是正确划分三个不同的物理过程,并能弄清这些过程的特点,针对相应的过程应用相应的规律列方程解题。 [例21]如图10所示,打桩机锤头质量为M,从距桩顶h高处自由下落,打在质量为m的木桩上,且在极短时间内便随桩一起向下运动,使得木桩深入泥土的距离为S,那么在木桩下陷过程中泥土对木桩的平均阻力是多少? 分析与解:这是一道联系实际的试题。许多同学对打木桩问题的过程没有弄清楚,加上又不理解“作用时间极短”的含意而酿成错误。其实打木桩问题可分为三个过程: 其一:锤头自由下落运动过程,设锤刚与木桩接触的速度为V0,则据机械能守恒定律得:Mgh=,所以V0=。 其二:锤与木桩的碰撞过程,由于作用时间极短,内力远大于外力,动量守恒,设碰后的共同速度为V,据动量守恒定律可得:MV0=(M+m)V,所以V= 其三:锤与桩一起向下做减速运动过程,设在木桩下陷过程