预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共13页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

初中数学定理、公式汇编 代数部分 一、数与代数 数与式 实数 实数的性质: ①实数a的相反数是—a,实数a的倒数是(a≠0); ②实数a的绝对值: ③正数大于0,负数小于0,两个负实数,绝对值大的反而小。 (2)整式与分式 ①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即(m、n为正整数); ②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0,m、n为正整数,m>n); ③幂的乘方法则:幂的乘方,底数不变,指数相乘,即(n为正整数); ④零指数:(a≠0); ⑤负整数指数:(a≠0,n为正整数); ⑥平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即; ⑦完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即; 分式 ①分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即;,其中m是不等于零的代数式; ②分式的乘法法则:; ③分式的除法法则:; ④分式的乘方法则:(n为正整数); ⑤同分母分式加减法则:; ⑥异分母分式加减法则:; 方程与不等式 ①一元二次方程(a≠0)的求根公式: ②一元二次方程根的判别式: 叫做一元二次方程(a≠0)的根的判别式: 方程有两个不相等的实数根; 方程有两个相等的实数根; 方程没有实数根; ③一元二次方程根与系数的关系:设、是方程(a≠0)的两个根,那么+=,=; 不等式的基本性质: ①不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变; ②不等式两边都乘以(或除以)同一个正数,不等号的方向不变; ③不等式两边都乘以(或除以)同一个负数,不等号的方向改变; 函数 一次函数的图象:函数y=kx+b(k、b是常数,k≠0)的图象是过点(0,b)且与直线y=kx平行的一条直线; 一次函数的性质:设y=kx+b(k≠0),则当k>0时,y随x的增大而增大;当k<0,y随x的增大而减小; 正比例函数的图象:函数的图象是过原点及点(1,k)的一条直线。 正比例函数的性质:设,则: ①当k>0时,y随x的增大而增大; ②当k<0时,y随x的增大而减小; 反比例函数的图象:函数(k≠0)是双曲线; 反比例函数性质:设(k≠0),如果k>0,则当x>0时或x<0时,y分别随x的增大而减小;如果k<0,则当x>0时或x<0时,y分别随x的增大而增大; 二次函数的图象:函数的图象是对称轴平行于y轴的抛物线; ①开口方向:当a>0时,抛物线开口向上,当a<0时,抛物线开口向下; ②对称轴:直线; ③顶点坐标(; ④增减性:当a>0时,如果,则y随x的增大而减小,如果,则y随x的增大而增大;当a<0时,如果,则y随x的增大而增大,如果,则y随x的增大而减小; 概率与统计部分 1.统计 数据收集方法、数据的表示方法(统计表和扇形统计图、折线统计图、条形统计图) (1)总体与样本 所要考察对象的全体叫做总体,其中每一个考察对象叫做个体,从总体中所抽取的一部分个体叫做总体的一个样本,样本中个体数目叫做样本的容量。 数据的分析与决策(借助所学的统计知识,对所收集到的数据进行整理、分析,在分析的结果上再作判断和决策) (2)众数与中位数 众数:一组数据中,出现次数最多的数据; 中位数:将一组数据按从大到小依次排列,处在最中间位置的数据。 (3)频率分布直方图 频率=,各小组的频数之和等于总数,各小组的频率之和等于1,频率分布直方图中各个小长方形的面积为各组频率。 (4)平均数的两个公式 ①n个数、……,的平均数为:; ②如果在n个数中,出现次、出现次……,出现次,并且+……+=n,则; (5)极差、方差与标准差计算公式: ①极差: 用一组数据的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,即:极差=最大值-最小值; ②方差: 数据、……,的方差为, 则= ③标准差: 数据、……,的标准差, 则= 一组数据的方差越大,这组数据的波动越大。 概率 ①如果用P表示一个事件发生的概率,则0≤P(A)≤1; P(必然事件)=1;P(不可能事件)=0; ②在具体情境中了解概率的意义,运用列举法(包括列表、画树状图)计算简单事件发生的概率。 ③大量的重复实验时频率可视为事件发生概率的估计值; 3.统计的初步知识、概率在社会生活中有着广泛的应用,能用所学的这些知识解决实际问题。 几何部分 1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两