预览加载中,请您耐心等待几秒...
1/9
2/9
3/9
4/9
5/9
6/9
7/9
8/9
9/9

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

研究语音识别技术必知的声学特征 HYPERLINK"http://me.1688.com/semxi.html"\t"_blank"祁慧慧|创建时间:2011年07月27日16:13|浏览:160|评论:0 标签: HYPERLINK"javascript:void(0)"HYPERLINK"javascript:void(0)" 【导读】语音声学特征的提取与选择是语音识别的一个重要环节。声学特征的提取既是一个信息大幅度压缩的过程,也是一个信号解卷过程,目的是使模式划分器能更好地划分。本文详细介绍了语音识别技术研究者必知的声学特征。语音识别技术中,声学特征参数提取的目的是对语音信号进行分析处理,去掉与语音识别无关的冗余信息,获得影响语音识别的重要信息,同时对语音信号进行压缩。 在实际应用中,语音信号的压缩率介于10-100之间。语音信号包含了大量各种不同的信息,提取哪些信息,用哪种方式提取,需要综合考虑各方面的因素,如成本、性能、响应时间、计算量等。因此,掌握语音识别常用声学特征是每一个语音识别技术研究者必备的专业技能之一。 线性预测系数LPC 线性预测分析从人的发声机理入手,通过对声道的短管级联模型的研究,认为系统的传递函数符合全极点数字滤波器的形式,从而n时刻的信号可以用前若干时刻的信号的线性组合来估计。通过使实际语音的采样值和线性预测采样值之间达到均方差最小LMS,即可得到线性预测系数LPC。对LPC的计算方法有自相关法(德宾Durbin法)、协方差法、格型法等等。计算上的快速有效保证了这一声学特征的广泛使用。与LPC这种预测参数模型类似的声学特征还有线谱对LSP、反射系数等等。 倒谱系数CEP 利用同态处理方法,对语音信号求离散傅立叶变换DFT后取对数,再求反变换iDFT就可得到倒谱系数。对LPC倒谱(LPCCEP),在获得滤波器的线性预测系数后,可以用一个递推公式计算得出。实验表明,使用倒谱可以提高特征参数的稳定性。 Mel倒谱系数MFCC和感知线性预测PLP 不同于LPC等通过对人的发声机理的研究而得到的声学特征,Mel倒谱系数MFCC和感知线性预测PLP是受人的听觉系统研究成果推动而导出的声学特征。对人的听觉机理的研究发现,当两个频率相近的音调同时发出时,人只能听到一个音调。临界带宽指的就是这样一种令人的主观感觉发生突变的带宽边界,当两个音调的频率差小于临界带宽时,人就会把两个音调听成一个,这称之为屏蔽效应。Mel刻度是对这一临界带宽的度量方法之一。 MFCC的计算 首先用FFT将时域信号转化成频域,之后对其对数能量谱用依照Mel刻度分布的三角滤波器组进行卷积,最后对各个滤波器的输出构成的向量进行离散余弦变换DCT,取前N个系数。PLP仍用德宾法去计算LPC参数,但在计算自相关参数时用的也是对听觉激励的对数能量谱进行DCT的方法。 非特定人语音特征VS特定人语音特征 非特定人语音识别系统一般侧重提取反映语义的特征参数,尽量去除说话人的个人信息;而特定人语音识别系统则希望在提取反映语义的特征参数的同时,尽量也包含说话人的个人信息。文章为作者独立观点,不代表阿里巴巴以商会友立场。转载此文章须经作者同意,并附上出处及文章链接。 语音识别系统技术原理剖析 HYPERLINK"http://me.1688.com/semxi.html"\t"_blank"祁慧慧|创建时间:2011年07月19日13:35|浏览:235|评论:0 标签: HYPERLINK"javascript:void(0)"HYPERLINK"javascript:void(0)" 【导读】根据语音识别实际应用中的不同,语音识别系统可以分为:特定人与非特定人的识别、独立词与连续词的识别、小词汇量与大词汇量以及无限词汇量的识别。但无论哪种语音识别系统,其基本原理和处理方法大体相同。语音识别原理 语音信号输入之后,预处理和数字化是进行语音识别的前提条件。其中,预处理主要是进行预滤波,保留正常人的300~3400Hz的语音信号;数字化是要进行A/D转换及抗混叠等处理;特征提取是进行语音信号训练和识别必不可少的步骤。 能够体现语音信号特征的参数包括: (1)基于LPC的倒谱参数; (2)Mel系数的倒谱参数; (3)采用前沿数字信号处理技术的特征分析手段,如小波分析、时/频域分析、人工神经网络等。 本文采用基于LPC的倒谱参数表示方法,提取出的特征值存入参考模式库中,用来匹配待识别语音信号的特征值。匹配计算是进行语音识别的核心部分,由待识别人的语音经过特征提取后,与系统训练时产生的模板进行匹配,在说话人辨认中,取与待识别语音相似度最大的模型所对应的语音作为识别结果,这就是语音识别的整个过程。 语音识别技术从应用类分为特