预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共23页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

带电粒子在复合场中的运动分析方法(1)当带电粒子在复合场中做匀速运动时,应根据平衡条件列方程求解. (2)当带电粒子在复合场中做匀速圆周运动时,往往应用牛顿第二定律和平衡条件列方程联立求解. (3)当带电粒子在复合场中做非匀速曲线运动时,应选用动能定理或动量守恒定律列方程求解. 注意:如果涉及两个带电粒子的碰撞问题,要根据动量守恒定律列方程,再与其他方程联立求解. 由于带电粒子在复合场中的受力情况复杂,运动情况多变,往往出现临界问题,这时应以题目中的“恰好”、“最大”、“最高”、“至少”等词语为突破口,挖掘隐含条件,并根据临界条件列出辅助方程,再与其他方程联立求解.一、根据带电粒子的运动轨迹进行分析推理 ●例1如图4-8所示,MN是一正点电荷产生的电场中的一条电场线.一个带负电的粒子(不计重力)从a到b穿越这条电场线的轨迹如图中虚线所示.下列结论正确的是() 图4-8 A.带电粒子从a到b的过程中动能逐渐减小 B.正点电荷一定位于M点的左侧 C.带电粒子在a点时具有的电势能大于在b点时具有的电势能 D.带电粒子在a点的加速度大于在b点的加速度【解析】由做曲线运动的物体的受力特点知带负电的粒子受到的电场力指向曲线的内侧,故电场线MN的方向为N→M,正点电荷位于N的右侧,选项B错误;由a、b两点的位置关系知b点更靠近场源电荷,故带电粒子在a点受到的库仑力小于在b点受到的库仑力,粒子在b点的加速度大,选项D错误;由上述电场力的方向知带电粒子由a运动到b的过程中电场力做正功,动能增大,电势能减小,故选项A错误、C正确. [答案]C 【点评】本专题内容除了在高考中以常见的计算题形式出现外,有时候也以选择题形式出现,通过带电粒子在非匀强电场中(只受电场力)的运动轨迹来分析电场力和能的特性是一种重要题型,解析这类问题时要注意以下三点: ①电场力一定沿电场线曲线的切线方向且一定指向轨迹曲线的内侧; ②W电=qUab=Ekb-Eka; ③当电场线为曲线时,电荷的运动轨迹不会与之重合.二、带电粒子在电场中的加速与偏转 ●例2喷墨打印机的结构简图如图4-9所示,其中墨盒可以发出墨汁微滴,其半径约为1×10-5m,此微滴经过带电室时被带上负电,带电荷量的多少由计算机按字体笔画的高低位置输入信号加以控制.带电后的微滴以一定的初速度进入偏转电场,带电微滴经过偏转电场发生偏转后打到纸上,显示出字体.无信号输入时,墨汁微滴不带电,径直通过偏转板而注入回流槽流回墨盒.偏转宄1.6cm,两板间的距离为0.50cm,偏转板的右端距纸3.2cm.若墨汁微滴的质量为1.6×10-10kg,以20m/s的初速度垂直于电场方向进入偏转电场,两偏转板间的电压是8.0×103V,其打到纸上的点距原射入方向的距离是2.0mm.求这个墨汁微滴通过带电室所带的电荷量的多少.(不计空气阻力和重力,可以认为偏转电场只局限于平行板电容器的内部,忽略边缘电场的不均匀性)为了使纸上的字放大10%,请你分析并提出一个可行的方法. 图4-9 【解析】设墨汁微滴所带的电荷量为q,它进入偏转电场后做类平抛运动,离开电场后做直线运动打到纸上,则距 原入射方向的距离为:y=at2+Ltan 又a=,t=,tan= 解得:y=(+L) 代入数据得:q=1.25×10-13C要将字体放大10%,只要使y增大为原来的1.1倍,可采用的措施为将两偏转板间的电压增大到8.8×103V,或将偏转板右端与纸的间距增大到3.6cm. [答案]1.25×10-13C将两偏转板间的电压增大到8.8×103V,或将偏转板右端与纸的间距增大到3.6cm 【点评】①本题也可直接根据推论公式y=(+L)tan =(+L)进行计算. ②和平抛运动问题一样,这类题型中偏转角度的正切表达式在解题中往往较为关键,且有tanθ=2tanα(α为射出点的位移方向与入射方向的夹角)的特点.三、带电粒子在有界磁场中(只受洛伦兹力)的运动 1.带电粒子在磁场中的运动大体包含五种常见情境,即:无边界磁场、单边界磁场、双边界磁场、矩形边界磁场、圆形边界磁场.带电粒子在磁场中的运动问题综合性较强,解这类问题往往要用到圆周运动的知识、洛伦兹力,还要牵涉到数学中的平面几何、解析几何等知识.因此,解此类试题,除了运用常规的解题思路(画草图、找“圆心”、定“半径”等)之外,更应侧重于运用数学知识进行分析. 2.带电粒子在有界匀强磁场中运动时,其轨迹为不完整的圆周,解决这类问题的关键有以下三点. ①确定圆周的圆心.若已知入射点、出射点及入射方向、出射方向,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两直线的交点即为圆周的圆心;若已知入射点、出射点及入射方向,可通过入射点作入射线的垂线,连接入射点和出射点,作此连线的垂直平分