预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共61页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一、假设检验 二、独立样本T检验 三、单因素方差分析 不同性别、不同年龄、不同教育背景、不同收入、不同客源地的游客群体在旅游购物、游憩动机、游憩满意度、乃至旅游影响感知等方面肯定存在差异,但如果只探讨他们之间的微小差异是没有意义的,我们需要了解的是他们在这些方面是否存在显著差异。 差异显著性检验属于假设检验的范畴,因而必须首先了解什么是假设检验(HypothesisTesting)。一、假设检验 (一)假设检验的基本原理 所谓假设,可以理解为是研究者对于某个有待解决的问题所提出的暂时性或尝试性的答案。就差异显著性的假设检验而言,其假设的陈述形式是一种差异式陈述方式。 例如: 不同性别的游客对某一景区提供的住宿条件的满意程度是否存在显著差异? 不同收入的游客群体对某一景区自然风光的评价是否存在显著差异? 要回答这些问题,我们最好先提出有关假设。 1.零假设和对立假设 如:我们假设不同性别的游客对某一景区提供的住宿条 件的满意程度不存在显著差异,我们以H0代表这个假 设,H0就称为“零假设”(nullhypothesis)(也称为“原 假设”或“虚无假设”)。 其对立面,不同性别的游客对某一景区提供的住宿条件的 满意程度存在显著差异,通常以H1代表,称为“对立假设” (alternativehypothesis)(也称为“备择假设”)。 零假设是待检验的假设,如果待检验的假设不成立,那么 其对立假设就成立。 2.假设检验的两类错误 第一类错误:也称为弃真错误,是指零假设H0实际上是真实的,而检验结果却拒绝了它。出现第一类错误的概率是显著性水平α,因此犯第一类错误的概率是可以控制的。 第二类错误:也称为取伪错误,是指零假设H0实际上是不真实的,而检验结果却接受了它。第二类错误的概率用β表示。 3.双侧检验和单侧检验 假设检验的两种形式 (1)双侧检验 有两个临界值,两个拒 绝域,每个拒绝域的面积为 ,原假设µ=µ0,只要 µ>µ0或µ<µ0有一侧出现, 就要拒绝原假设。 双侧检验按查表求临界值。 (2)单侧检验 有一个临界值,一个拒绝域, 拒绝域的面积为α。 当所考察的数值越大越好时, 用单侧检验。 如考察灯泡的寿命 当所考察的数值越小越好时, 用单侧检验。 如考察产品的废品率 单侧检验按α查表求临界值。4.假设检验的步骤 提出假设。 (2)选取检验统计量,并在原假设H0成立的条件下计算统计 量的值。 (3)对于给定的显著性水平α,决定临界值。 α的取值范围为α≤0.01,α≤0.05和α≤0.10,一般情况下,常用α≤0.05。 当α≤0.05时,差异显著,当α≤0.01时,差异极显著。 (4)对假设做出判断。 通过对计算获得的统计量与临界值的比较,作出接受或 拒绝零假设的决定。 显著性水平值α定得越大,拒绝域就越大,就越不容易接受原假设,反之,显著性水平值定得越小,拒绝域就越小,就越容易接受原假设。因此,在统计检验的问题中,要注意α值的确定问题。 使用统计软件进行假设检验,在输出的结果中,会出现P值(Sig.),P值是判断检验结果的另一个衡量标准,是进行检验决策的另一个依据。P值是拒绝零假设的最小值。 当P≤α时,拒绝H0,表明样本均值存在显著差异; 当P>α时,接受H0,表明样本均值不存在显著差异。5.检验方法的选择 一般而言,差异显著性检验涉及的变量关系可以理解为一种因果关系。从统计学的观点来看,这种涉及两类变量的检验属于双变量(bivariate)的统计检验。对于双变量的假设检验,我们必须指定其中的一个变量为自变量 (independentvariable)、另一个为因变量(dependentvariable)。 如不同性别的游客对某景区提供的住宿条件的满意度存在 显著差异,这里视性别为自变量,满意度为因变量,即认 为这种满意度的差别是因为性别的不同引起的。 二、独立样本T检验 (一)基本原理 当自变量为间断(类别)变量,因变量为连续变量时,常使用T检验与方差检验进行有关分析。 SPSS软件提供的T检验有3种形式,分别是单样本T检验 (One-SampleTTest),独立样本T检验(Independent-SampleTTest)和成对样本T检验(Paired-SampleTTest)。 在旅游研究中,比较常用的是独立样本T检验,因而本章仅讨论独立样本T检验。独立样本T检验在一些教科书中被称为独立双样本T检验,顾名思义,其显然仅适用于自变量为两组的情况。如考虑不同性别的游客心理感知差异时,由于性别只有男女两组,此时应该采取独立样本T检验方法进行有关检验。独立样本T检验常用于进行两独立样本均值的比较。所谓 独立样本是指两组样本之间没有任何联系,但各自接受相 同的测量。假设两组样本