预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共69页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第一章量子力学基础知识 (课堂讲授8学时) 1.微观粒子的运动特征 2.量子力学基本假设 3.算符、本征方程及其解 4.势箱中自由粒子的薛定谔 方程及其解 十九世纪末,经典物理学已经形成一个相当完善的体系,机械力学方面建立了牛顿三大定律,热力学方面有吉布斯理论,电磁学方面用麦克斯韦方程统一解释电、磁、光等现象,而统计方面有玻耳兹曼的统计力学。当时物理学家很自豪地说,物理学的问题基本解决了,一般的物理都可以从以上某一学说获得解释。唯独有几个物理实验还没找到解释的途径,而恰恰是这几个实验为我们打开了一扇通向微观世界的大门。电子、原子、分子和光子等微观粒子,具有波粒二象性的运动特征。这一特征体现在以下的现象中,而这些现象均不能用经典物理理论来解释,由此人们提出了量子力学理论,这一理论就是本课程的一个重要基础。一个吸收全部入射线的表面称为黑体表面。一个带小孔的空腔可视为黑体表面。它几乎完全吸收入射幅射。通过小孔进去的光线碰到内表面时部分吸收,部分漫反射,反射光线再次被部分吸收和部分漫反射……,只有很小部分入射光有机会再从小孔中出来。如图1-1所示图1-2表示在四种不同的温度下,黑体单位面积单位波长间隔上发射的功率曲线。十九世纪末,科学家们对黑体辐射实验进行了仔细测量,发现辐射强度对腔壁温度T的依赖关系。为了解释黑体辐射现象,他提出粒子能量永远是h的整数倍,=nh,其中是辐射频率,h为新的物理常数,后人称为普朗克常数(h=6.626×10-34J·s),这一创造性的工作使他成为量子理论的奠基者,在物理学发展史上具有划时代的意义。他第一次提出辐射能量的不连续性,著名科学家爱因斯坦接受并补充了这一理论,以此发展自己的相对论,波尔也曾用这一理论解释原子结构。量子假说使普朗克获得1918年诺贝尔物理奖。TheNobelPrizeinPhysics1918根据光波的经典图像,波的能量与它的强度成正比,而与频率无关,因此只要有足够的强度,任何频率的光都能产生光电效应,而电子的能动将随光强的增加而增加,与光的频率无关,这些经典物理学的推测与实验事实不符。图1-3光电效应示意图光电效应和光子学说将频率为的光照射到金属上,当金属中的一个电子受到一个光子撞击时,产生光电效应,光子消失,并把它的能量h转移给电子。电子吸收的能量,一部分用于克服金属对它的束缚力,其余部分则表现为光电子的动能。当h>W时,从金属中发射的电子具有一定的动能,它随的增加而增加,与光强无关。EinsteinTheNobelPrizeinPhysics1921氢原子光谱与Bohr理论2+eBohr模型对于单电子原子在多方面应用得很有成效,对碱金属原子也近似适用.但它竟不能解释He原子的光谱,更不必说较复杂的原子;也不能计算谱线强度。后来,Bohr模型又被.Sommerfeld等人进一步改进,增加了椭圆轨道和轨道平面取向量子化(即空间量子化).这些改进并没有从根本上解决问题,促使更多物理学家认识到,必须对物理学进行一场深刻变革.法国物理学家德布罗意(Broglie)勇敢地迈出一大步.1924年,他提出了物质波可能存在的主要论点.BohrBohr(older)实物微粒的波粒二象性1927年,戴维逊(Davisson)与革末(Germer)利用单晶体电子衍射实验,汤姆逊(Thomson)利用多晶体电子衍射实验证实了德布罗意的假设。 光(各种波长的电磁辐射)和微观实物粒子(静止质量不为0的电子、原子和分子等)都有波动性(波性)和微粒性(粒性)的两重性质,称为波粒二象性。 戴维逊(Davisson)等估算了电子的运动速度,若将电子加压到1000V,电子波长应为几十个pm,这样波长一般光栅无法检验出它的波动性。他们联想到这一尺寸恰是晶体中原子间距,所以选择了金属的单晶为衍射光栅。将电子束加速到一定速度去撞击金属Ni的单晶,观察到完全类似X射线的衍射图象,证实了电子确实具有波动性。图1-5为电子射线通过CsI薄膜时的衍射图象,一系列的同心圆称为衍射环纹。该实验首次证实了德布罗意物质波的存在。后来采用中子、质子、氢原子等各种粒子流,都观察到了衍射现象。证明了不仅光子具有波粒二象性,微观世界里的所有微粒都有具有波粒二象性,波粒二象性是微观粒子的一种基本属性。微观粒子因为没有明确的外形和确定的轨道,我们得不到一个粒子一个粒子的衍射图象,我们只能用大量的微粒流做衍射实验。实验开始时,只能观察到照象底片上一个个点,未形成衍射图象,待到足够长时间,通过粒子数目足够多时,照片才能显出衍射图象,显示出波动性来。可见微观粒子的波动性是一种统计行为。微粒的物质波与宏观的机械波(水波,声波)不同,机械波是介质质点的振动产生的;与电磁波也不同,电磁波是电场与磁场的振动在空间的传播。微粒物质波,能反映微