预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于卷积神经网络的低剂量CT图像处理方法 Title:Low-DoseCTImageProcessingMethodBasedonConvolutionalNeuralNetworks Abstract: Low-doseCTimaginghasbecomeapopulartechniqueduetoitsreducedradiationexposuretopatients.However,low-doseCTimagesoftensufferfromdegradedimagequality,includingnoiseandartifacts,whichcanaffecttheaccuracyofdiagnosis.Thispaperproposesanovelimageprocessingmethodbasedonconvolutionalneuralnetworks(CNNs)toenhancethequalityoflow-doseCTimages.Theeffectivenessoftheproposedmethodisdemonstratedthroughexperimentalresults,showingsignificantimprovementsinimagequalityanddiagnosticaccuracy. 1.Introduction Computedtomography(CT)imagingplaysacrucialroleinthediagnosisandmonitoringofvariousdiseases.However,theusageofCTimagingcomeswithconcernsregardingthepotentialrisksassociatedwithradiationexposure.Low-doseCTimagingaimstoreducetheradiationdosewhilemaintainingdiagnosticimagequality.However,thereductioninradiationdoseoftenresultsindegradedimagequality,limitingtheefficacyofdiagnosis.Toaddressthischallenge,thispaperproposesamethodbasedonconvolutionalneuralnetworksforlow-doseCTimageprocessing. 2.RelatedWork Previousstudieshaveexploredvariousmethodsforlow-doseCTimageprocessing,includingiterativereconstructionalgorithms,statisticalmethods,andmachinelearningapproaches.Whilethesemethodshaveachievedcertainimprovements,theyoftensufferfromlimitationssuchashighcomputationalcomplexityorinsufficientabilitytocaptureintricateimagefeatures.Convolutionalneuralnetworks,atypeofdeeplearningalgorithm,haveshowngreatpotentialinvariouscomputervisiontasks,includingimagerestorationandenhancement.ThismotivatestheuseofCNNsforlow-doseCTimageprocessing. 3.Methodology Theproposedmethodconsistsofseveralkeysteps.First,adatasetofpairedlow-doseandstandard-doseCTimagesiscollectedfortrainingtheCNNmodel.Thepairedimagesareusedtoestablishamappingrelationshipbetweenlow-doseandstandard-doseimages,enablingtheCNNtolearntheimagefeaturesassociatedwithhighimagequality.TheCNNarchitectureisdesignedtohavemultipleconvolutionallayers,followed