预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一类拟线性Schrödinger方程基态解的存在性 Title:ExistenceofGroundStateSolutionsforaClassofQuasi-linearSchrödingerEquations Abstract: Thestudyofgroundstatesolutionsforpartialdifferentialequationshasdrawnconsiderableattentioninrecentyearsduetoitsrelevanceinvariousareasofphysicsandmathematics.Inthispaper,weinvestigatetheexistenceofgroundstatesolutionsforaclassofquasi-linearSchrödingerequations.Thestudyfocusesonestablishingtheexistenceofsolutionsinthegroundstateenergylevelanddiscussingtheirproperties. 1.Introduction TheSchrödingerequationisafundamentalequationinquantummechanicsthatdescribesthebehaviorofquantumparticles.Inrecentdecades,severalvariantsoftheSchrödingerequationhavebeenextensivelystudied,includingnonlinearandquasi-linearversions.Theseequationsareofinterestduetotheirapplicationsincondensedmatterphysics,nonlinearoptics,andmathematicalphysics. 2.MathematicalFormulation Weconsideraclassofquasi-linearSchrödingerequationsoftheform: -Δu+V(x)u=f(x,u), whereu:ℝⁿ→ℂisthecomplex-valuedfunction,ΔistheLaplacianoperator,V(x)isapotentialfunction,andf(x,u)isanonlinearterm.Ourgoalistoinvestigatetheexistenceofgroundstatesolutionsforthisequation. 3.VariationalMethods Tostudytheexistenceofgroundstatesolutions,weemployvariationalmethods.Wesetupanappropriatefunctional,suchastheenergyfunctional,andintroduceaclassoftrialfunctions.Byminimizingthefunctionaloverthisclass,weaimtoobtainasolutionthatattainstheminimumvalueofthefunctional.Thissolutionrepresentsthegroundstatesolutionforourequation. 4.GroundStateEnergyLevel ThegroundstateenergylevelisanessentialaspectofthestudyofSchrödingerequations.Itcorrespondstotheenergyatwhichthesystemisinthelowestpossiblestate.Weanalyzethebehavioroftheenergyfunctionalandestablishtheexistenceofaminimizerfortheenergyatthegroundstatelevel. 5.ExistenceResults Inthissection,wepresentthemainexistenceresultsfortheclassofquasi-linearSchrödingerequationsunderconsideration.WediscusstheassumptionsrequiredonthepotentialfunctionV(x)andthenonlineartermf(x,u).Weprovetheexistenceofagro