高中数学浅淡赋值法在抽象函数中的应用学法指导.doc
森林****io
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
高中数学浅淡赋值法在抽象函数中的应用学法指导.doc
用心爱心专心高中数学浅淡赋值法在抽象函数中的应用我们把未给出具体解析式的函数称为抽象函数。这种函数表现形式的抽象性,使得直接求解析式比较难。解决这类函数可以通过化抽象为具体的方法,即赋予恰当的数值或代数式,经过恰当的运算和推理加以解决。下面分类举例加以说明。一、判断函数的奇偶性例1.若对于任意实数x,y均成立,且f(x)不恒为0,请判断函数f(x)的奇偶性。解:令则有,故有令,则有,故有,又因为不恒为0,所以函数f(x)是奇函数。例2.已知函数为非零函数,若有,试判断函数的奇偶性。解:令,则有,故有令,则
浅淡赋值法在抽象函数中的应用 学法指导 不分版本 试题.doc
浅淡赋值法在抽象函数中的应用张鸿群我们把未给出具体解析式的函数称为抽象函数。这种函数表现形式的抽象性,使得直接求解析式比较难。解决这类函数可以通过化抽象为具体的方法,即赋予恰当的数值或代数式,经过恰当的运算和推理加以解决。下面分类举例加以说明。一、判断函数的奇偶性例1.若对于任意实数x,y均成立,且f(x)不恒为0,请判断函数f(x)的奇偶性。解:令则有,故有令,则有,故有,又因为不恒为0,所以函数f(x)是奇函数。例2.已知函数为非零函数,若有,试判断函数的奇偶性。解:令,则有,故有令,则有,故有令,则
浅淡赋值法在抽象函数中的应用.doc
浅淡赋值法在抽象函数中的应用《试题调研》网站免费精品资料下载:HYPERLINK"http://www.tesoon.com/stdy/"http:/www.tesoon.com/stdy/试题调研,金考卷等天星产品低价直销(批量),联系人李老师,QQ45589335我们把未给出具体解析式的函数称为抽象函数。这种函数表现形式的抽象性,使得直接求解析式比较难。解决这类函数可以通过化抽象为具体的方法,即赋予恰当的数值或代数式,经过恰当的运算和推理加以解决。下面分类举例加以说明。一、判断函数的奇偶性例1.
高中数学 浅淡赋值法在抽象函数中的应用解题思路大全.doc
用心爱心专心浅淡赋值法在抽象函数中的应用我们把未给出具体解析式的函数称为抽象函数。这种函数表现形式的抽象性,使得直接求解析式比较难。解决这类函数可以通过化抽象为具体的方法,即赋予恰当的数值或代数式,经过恰当的运算和推理加以解决。下面分类举例加以说明。一、判断函数的奇偶性例1.若对于任意实数x,y均成立,且f(x)不恒为0,请判断函数f(x)的奇偶性。解:令则有,故有令,则有,故有,又因为不恒为0,所以函数f(x)是奇函数。例2.已知函数为非零函数,若有,试判断函数的奇偶性。解:令,则有,故有令,则有,故有
赋值法在抽象函数中的应用.docx
赋值法在抽象函数中的应用我们把未给出具体解析式的函数称为抽象函数。这种函数表现形式的抽象性,使得直接求解析式比较难。解决这类函数可以通过化抽象为具体的方法,即赋予恰当的数值或代数式,经过恰当的运算和推理加以解决。下面分类举例加以说明。一、判断函数的奇偶性例1.若对于任意实数x,y均成立,且f(x)不恒为0,请判断函数f(x)的奇偶性。解:令则有,故有令,则有,故有,又因为不恒为0,所以函数f(x)是奇函数。例2.已知函数为非零函数,若有,试判断函数的奇偶性。解:令,则有,故有令,则有,故有令,则有,且为非