预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于迁移学习策略的压板开关状态识别 Title:TransferLearningforRecognitionofPressurePlateSwitchState Abstract: Inrecentyears,theadvancementofInternetofThings(IoT)deviceshasledtothewidespreaduseofpressureplateswitchesinvariousapplications,suchassmarthomesandindustrialautomation.Theaccuraterecognitionofthepressureplateswitchstate(on/off)playsacrucialroleinenablingseamlessinteractionbetweenhumansandthesesmartsystems.However,duetoenvironmentalvariationsandinherentnoise,accuratelydetectingthestateofapressureplateswitchisachallengingtask. Thispaperproposesatransferlearningapproachtoaddressthechallengeofpressureplateswitchstaterecognition.Transferlearningleveragestheknowledgelearnedfromasourcedomaintoachievebetterperformanceonatargetdomain.Byutilizingpre-trainedmodels,theproposedtransferlearningframeworkaimstoovercomethelimitationsoflimitedlabeleddataanddomainshiftbetweendifferentenvironments. Introduction: Thepressureplateswitchisacommonlyuseddevicethatdetectsmechanicalpressurechanges.Itiswidelyutilizedinmanyapplications,includinghomeautomationsystems,securitysystems,andindustrialmachinery.Theaccuraterecognitionofthepressureplateswitchstate(on/off)isessentialforprovidingtimelyresponsesandappropriateactionsintheseapplications.However,accuratelydetectingthestateofapressureplateswitchischallengingduetofactorssuchasnoise,varyingenvironmentalconditions,anddifferentinstallationsetups. MethodsandFramework: Theproposedtransferlearningframeworkconsistsofthefollowingsteps: 1.DataCollection:Gatheradatasetofpressureplateswitchstates,includingbothonandoffstates.Thisdatasetshouldbediverse,coveringvariousenvironmentalconditionsandinstallationsetups. 2.Pre-training:Utilizeapre-trainedmodel,suchasaconvolutionalneuralnetwork(CNN),onarelateddatasetortask.Thisallowsthemodeltolearngeneralfeaturesthatcanbeusefulforswitchstaterecognition. 3.Fine-tuning:Adaptthepre-trainedmodeltothespecificpressureplateswitchrecognitiontaskusingthecollecteddataset.Thelayersofthepre-trainedmodelaremodifiedandre-trainedusingtransferl