预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于双向LSTM模型的中文命名实体识别 Title:NamedEntityRecognitioninChineseUsingBiLSTMModel Abstract: NamedEntityRecognition(NER)isacriticaltaskinnaturallanguageprocessing(NLP)thatinvolvesidentifyingandclassifyingnamedentitiessuchaspeople,organizations,locations,andotherspecifiedcategorieswithintextdocuments.ThispaperproposesaBiLSTM-basedapproachforNERinChinese,whichleveragesthepowerofBidirectionalLongShort-TermMemory(BiLSTM)networkstocapturecontextualinformationandachieveaccurateentityrecognition. 1.Introduction: NamedEntityRecognitionisessentialforvariousNLPapplicationssuchasinformationextraction,questionanswering,andmachinetranslation.ChineseNERposesuniquechallengesduetothelackofexplicitwordboundariesandalargenumberofhomonyms.Totacklethesechallenges,weproposeaBiLSTM-basedmodelthatcaneffectivelycapturesequentialdependenciesandcontextinformation. 2.RelatedWork: ThissectionprovidesanoverviewoftheexistingapproachestoChineseNER,includingrule-basedmethodsandmachinelearning-basedmethodssuchasConditionalRandomFields(CRF),HiddenMarkovModels(HMM),andSupportVectorMachines(SVM).WediscusstheirlimitationsandmotivationsforadoptingaBiLSTMmodel. 3.Methodology: Inthissection,wedescribetheproposedBiLSTM-basedmodelforChineseNER.ThemodelconsistsoftwolayersofLSTMnetworksrunninginbothforwardandbackwarddirections.Weexplainthearchitecturaldetails,includingwordembedding,featureextraction,andlabelprediction.Wealsodiscussthepre-processingsteps,suchaswordsegmentationandfeaturegeneration. 4.Dataset: WeutilizeaChineseNERdatasetfortrainingandevaluationpurposes.Thisdatasetcontainslabeledtextdocumentsannotatedwithnamedentitytags.Wedescribethedatacollectionprocess,annotationguidelines,andstatisticsofthedataset. 5.ExperimentalSetup: Weoutlinetheexperimentalsetup,includingthechoiceofevaluationmetrics,parametertuning,modeltraining,andevaluationmethodologies.Wesplitthedatasetintotraining,validation,andtestsets,andpresenttheconfigurationdetailsoftheBiLSTMmodel. 6.ResultsandDiscussion: Wepresenttheexperimentalresultsonth