预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一种LDA与SVM混合的多类分类方法 Introduction Theclassificationoftextdocumentshasbeenawidelyresearchedtopicinthefieldofmachinelearning.Inrecentyears,therehasbeenanincreasinginterestintheuseoftopicmodels,suchasLatentDirichletAllocation(LDA),fordocumentclassification.LDAisagenerativeprobabilisticmodelthatidentifiestopicsfromacorpusoftextbyidentifyingunderlyingpatternsinthedistributionofwordsacrossdocuments.However,LDAonlyprovidestopicrepresentationforeachdocumentanddoesnotdifferentiatebetweentheimportanceoftopicsinthedocument.Toovercomethislimitation,weproposeahybridapproachcombiningLDAandaclassificationmodelcalledSupportVectorMachines(SVM). Methodology LDAisfirstusedonthecorpusoftexttoextractthemostrelevanttopicsinthedocuments.Thesetopicsarethenusedtorepresenttheoriginaltextdocumentsasasetoffeatures.Thefeaturesetisconstructedusingthetopicdistributionsofeachdocument.SVMisthentrainedonthisfeaturesettoclassifytextdocumentsintomultipleclasses.SVMischosenduetoitseffectivenessinhandlinghigh-dimensionaldataanditsrobustnessindealingwithcomplexdecisionboundaries. Theproposedmethodologycanbesummarizedasfollows: 1.PreprocessingofData:Thecorpusoftextispreprocessedbyremovingstopwords,stemming,andconvertingtexttolowercasetoensureconsistency. 2.TopicModelingusingLDA:LDAisappliedtothepreprocessedtextdatatoidentifythemostrelevanttopicsineachdocument.Theresultingtopicdistributionsrepresentthetextdocumentasasetoffeatures. 3.FeatureConstruction:TopicdistributionsareusedtoconstructthefeaturesetforSVM.Eachfeaturecorrespondstoaparticulartopicinthecorpus,andthevalueofthefeatureistheprobabilityofthattopicoccurringinthedocument. 4.SVMClassification:SVMistrainedonthefeaturesettoclassifytextdocumentsintomultipleclasses. ExperimentsandResults Theproposedmethodwasevaluatedusingtwodifferentdatasets.ThefirstdatasetwastheReuters-21578dataset,whichcontainsmultiplecategoriesofnewsarticles.Theseconddatasetwasthe20Newsgroupsdataset,whichcontainsvarioustypesofnewsgroups. FortheReuters-21578dataset,wecomparedthepropose