预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一种改进的KNN分类方法 Introduction: KNN(K-NearestNeighbors)isapopularalgorithmforclassificationandregressionproblems.Itisanon-parametricmethodthatworksbycomparingthedistancebetweennewtestdatapointstoexistinglabeleddatapointsinthetrainingset,choosingtheK-nearestneighborsandassigningtheclassofthemajorityoftheseneighborsasthepredictedclassforthenewdatapoint.Althoughitisasimpleandeffectivealgorithm,ithassomedrawbackssuchassensitivitytonoise,imbalancedclassdistributions,andvariabledistancesbetweendatapoints.Therefore,thereisaneedforanimprovedversionoftheKNNalgorithm. TheProposedMethod: TheproposedmethodaimstoaddresstheaforementioneddrawbacksoftheKNNalgorithmbyincorporatingthreemainimprovements:DistanceWeighting,LocalizedKNNandfeatureselection. 1.DistanceWeighting: OneofthemainissueswiththeKNNalgorithmisthatitassignsequalweightstoallthenearestneighborswithoutconsideringtheirdistancefromthenewdatapoint.Therefore,thismethodincorporatesadistance-weightingmechanismthatassignshigherweightstothenearestneighborsandlowerweightstothefartherneighbors.Thedistance-weightingfunctioncanbedefinedasfollows: w(i)=1/d(x,xi)^p Wherew(i)istheweightoftheithneighbor,d(x,xi)istheEuclideandistancebetweenthenewdatapointxandtheithneighborxi,andpisauser-definedparameterthatcontrolstheinfluenceofdistanceontheweightcalculation. 2.LocalizedKNN: AnotherissuewiththeKNNalgorithmisthatittreatsthewholedatasetasasingleentityanddoesnottakeintoaccountthelocalvariationsinthedistributionsofthedata.Therefore,thismethodincorporatesalocalizedKNNmechanismthatdividesthedatasetintosmallersub-regionsandidentifiesthenearestneighborswithineachofthesesub-regions.ThelocalizedKNNfunctioncanbedefinedasfollows: KNN(x,Xi)={xi|xiεXiandd(x,xi)≤d(x,xj)forallxjεXi} WhereKNN(x,Xi)isthesetofnearestneighborsofthenewdatapointx,withinthesub-regionXi. 3.FeatureSelection: Lastly,thismethodincorporatesafeatureselectionmechanismwhichidentifiesthemostrelevantfeaturesforclassificationusingavarietyoffeatureselectiontechniquessuchasMutualInformation,R