预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

HMM改进Adhoc网络延时的模型及抗毁性研究 Introduction Adhocnetworksarewirelessnetworksthatdonotrequireafixedinfrastructureandcanbesetuponthefly.Theyarecommonlyusedindisasterresponseandmilitaryapplications.Oneofthemajorchallengesinadhocnetworksisthehighlevelofunpredictabilityandinconsistencyinthequalityofserviceprovided.Thisisparticularlytruewithregardtonetworklatency,whichcanhaveasignificantimpactonnetworkperformance. Inthispaper,weproposeamodelforimprovingnetworklatencyinadhocnetworksusingHiddenMarkovModels(HMMs).Wealsoexaminetheresilienceoftheproposedmodelagainstnetworkattacks. Background Adhocnetworksarecharacterizedbytheirdecentralizednature,lackofafixedinfrastructure,anddynamictopology.Thesecharacteristicsmakethemhighlyflexibleandadaptable,butalsoposesignificantchallengeswithregardtonetworklatency. Networklatencyisthetimedelaybetweenthetransmissionofapacketanditsreceptionatthedestinationnode.Inadhocnetworks,thelatencyisoftenaffectedbyarangeoffactorsincludingdistancebetweennodes,communicationchannelquality,andnodemobility. Severalexistingapproachestomitigatingnetworklatencyinadhocnetworksincluderoutingalgorithmsthatoptimizepaths,power-controlalgorithmstomanageinterferenceandmulti-pathroutingmechanisms.However,thesemethodsmaynotaddressalllatency-relatedissuesandmaynotbesuitableforallnetworktopologies. ProposedHMM-BasedModel TheproposedmodelisbasedonHiddenMarkovModels(HMMs),whichareprobabilisticmodelsthatcanbeusedtocapturecomplexrelationshipsbetweenobserveddataandunderlyingstates.Themodelconsistsofasetofstatesthatrepresentdifferentnetworklatencyconditionsandasetofobservationsthatcorrespondtolatencymeasurements. Ateachtimestep,themodelmakesaprobabilistictransitionbetweendifferentstatesbasedonthecurrentobservationandthepreviousstate.Theobservationsareweightedbasedonthehistoricaldatatoimprovetheaccuracyofthemodel. TheHMM-basedmodelhasseveraladvantagesoverexistingapproachestomitigatingnetworklatencyinadhocnetworks.Itcancapturethedynamicnatureoflatencychangesandadapttodifferentnetworkc