预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

ARIMA模型在居民消费价格指数预测中的应用研究 Abstract TheapplicationofARIMAmodelinthepredictionofconsumerpriceindex(CPI)hasbecomeapopulartopicinrecentyears.TheARIMAmodelisatimeseriesforecastingmodelthatiswidelyusedtopredictfuturetrendsandpatternsindata.Inthispaper,weconductacomprehensivestudyontheapplicationoftheARIMAmodelinCPIprediction.ThestudymainlyfocusesonthetheoreticalfoundationoftheARIMAmodel,methodsofparameterselection,modelfitting,andanalysisofthepredictionresults.Furthermore,wealsocomparethepredictionresultsoftheARIMAmodelwithothermethodstoevaluateitseffectivenessandefficiency.ThestudyprovidesavaluableinsightintotheapplicationofARIMAinCPIprediction,whichcancontributetobettereconomicplanninganddecision-making. Introduction Theconsumerpriceindexisanimportanteconomicindicatorthatmeasurestheaveragepricelevelofgoodsandservicespurchasedbyhouseholds.ThepredictionofCPIiscrucialforgovernmentpolicymakers,investors,andconsumers,asitinfluenceseconomicpolicydecisions,investmentstrategies,andpersonalfinancialplanning.TheARIMAmodelisapowerfultoolforforecastingtimeseriesdata,andithasbeenwidelyusedinvariousfields,includingeconomics,finance,andengineering.Inrecentyears,theARIMAmodelhasalsobeenappliedtoforecastCPIdata.ThispaperaimstoinvestigatetheapplicationofARIMAinCPIpredictionandtoprovideacomprehensivestudyonthetopic. Theoreticalfoundation TheARIMAmodelisatimeseriesforecastingmodelthatdescribestherelationshipbetweenthecurrentobservationandthepastobservationsofthesametimeseries.Itrequiresthreecomponents:autoregression(AR),integration(I),andmovingaverage(MA).TheARcomponentrepresentsthelinearregressionofthecurrentobservationonthepastobservations.TheMAcomponentrepresentsthelinearregressionofthecurrentobservationonthepasterrorterms.TheIcomponentrepresentsthenumberoftimesthedataisdifferencedtoachievestationarity.TheARIMAmodelisdenotedasARIMA(p,d,q),wherepistheorderoftheARcomponent,distheorderofintegration,andqistheorderoftheMAcomponent. Methodsofparameterselection TheselectionofARIMAparametersisac