预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

配电变压器大数据检测新方法鉴别绕组材质和容量 Title:ANovelMethodforIdentifyingWindingMaterialandCapacityinPowerDistributionTransformersUsingBigDataAnalysis 1.Introduction Powerdistributiontransformersplayacrucialroleintheefficienttransmissionanddistributionofelectricalenergy.Theperformanceandreliabilityofthesetransformersdependonvariousfactors,includingthequalityofthewindingmaterialandthecapacityofthetransformer.Traditionalmethodsofidentifyingwindingmaterialandcapacityhavebeenlimitedbymanualinspectionandtesting,whicharetime-consumingandoftensubjecttohumanerror.Thispaperproposesanovelmethodthatutilizesbigdataanalysistoaccuratelyandefficientlydetectthewindingmaterialandcapacityofpowerdistributiontransformers. 2.DataCollectionandPreparation Todevelopthismethod,avastamountofdataneedstobecollectedfromdifferenttransformers,includinginformationabouttheirwindingmaterialandcapacity.Thisdatacanbeobtainedfromvarioussources,suchastransformermanufacturers,utilities,andmaintenancerecords.Thecollecteddatathenneedstobecarefullypreparedandcleansedtoremoveanynoiseorinconsistencies. 3.FeatureExtraction Oncethedataisprepared,relevantfeaturesneedtobeextracted.Thesefeaturescanincludeelectricalcharacteristics,temperaturereadings,vibrationpatterns,andothermeasurableparametersthatareindicativeofthewindingmaterialandcapacity.Featureselectiontechniques,suchasprincipalcomponentanalysis(PCA)orcorrelationanalysis,canbeusedtoidentifythemostsignificantfeatures. 4.StatisticalAnalysisandModeling Theextractedfeaturescanbeanalyzedusingstatisticaltechniquestoidentifypatternsandrelationships.Variousmachinelearningalgorithms,suchasdecisiontrees,supportvectormachines,orneuralnetworks,canbeusedtobuildmodelsthatcanpredictthewindingmaterialandcapacitybasedontheextractedfeatures.Thesemodelscanbetrainedusingsupervisedlearningtechniques,wherethecorrectwindingmaterialandcapacityvaluesareprovidedforasubsetofthecollecteddata. 5.ModelEvaluationandValidation Toensuretheaccuracyandreliabilityofthedevelopedmodels,theyneedtobeevaluatedandval