预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于多元变量组合的回归支持向量机集成模型及其应用 Abstract: RegressionSupportVectorMachine(RSVM)isapowerfultoolforpredictionandestimationinmanyfields.However,itmaynotalwaysworkwellwhenthedataincludesmultiplevariableswithcomplexinteractions.Inthispaper,weproposeanewapproach,calledMulti-VariableCombinationRegressionSupportVectorMachine(MCRSVM),whichintegratesmultipleregressionsupportvectormachinestomodeltheinteractionsbetweenvariables.Usingsimulationexperimentsandreal-worlddataanalysis,wedemonstratethatMCRSVMcanoutperformseveralexistingmethodsforpredictingtheresponsevariable. Introduction: RegressionSupportVectorMachine(RSVM)iswidelyusedforpredictionandestimationinvariousfieldssuchasengineering,finance,andbiology.RSVMaimstoidentifyahyperplanethatmaximizesthemarginbetweentwogroups.However,whenthedataincludesmultiplevariables,RSVMmaynotalwaysworkwellsinceitonlyconsiderslinearcombinationsofthevariables. Toaddressthisproblem,weproposeanewapproach,calledMulti-VariableCombinationRegressionSupportVectorMachine(MCRSVM),whichintegratesmultipleregressionsupportvectormachinestomodeltheinteractionsbetweenvariables.MCRSVMtakesadvantageofthekerneltrickandthemultiplekernellearningalgorithmtocombinedifferentkernels.OurapproachcanmodelthecomplexinteractionsbetweenvariablesandimprovetheperformanceofRSVMforpredictionandestimation. Methodology: TheMCRSVMapproachconsistsofthreesteps: First,weapplymultipleregressionsupportvectormachinestoeachvariabletoobtainthecoefficientvectorforthatvariable.Thecoefficientvectordescribestherelationshipbetweenthevariableandtheresponsevariable. Second,wecombinethecoefficientvectorsforallvariablesusingmultiplekernellearningalgorithms.Themultiplekernellearningalgorithmusesaweightedcombinationofdifferentkernelstoobtainthebestpossiblekernelfunction.Bycombiningdifferentkernels,wecancapturethecomplexinteractionsbetweenvariables. Third,weusethecombinedkernelfunctiontotrainasupportvectormachineforpredictionandestimation.Thetrainedmodelcanbeusedtopredicttheresponsevariablefornewdata. Result