预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于EMD近似熵和TWSVM的齿轮箱故障诊断 Title:GearboxFaultDiagnosisUsingApproximateEntropyofEmpiricalModeDecompositionandTwinSupportVectorMachine Abstract: Gearboxfaultdiagnosisplaysacrucialroleinensuringthesafeandreliableoperationofmachinery.Thispaperproposesanovelapproachforgearboxfaultdiagnosisbycombiningtheapproximateentropyofempiricalmodedecomposition(EMD)withtheTwinSupportVectorMachine(TWSVM).TheEMDmethodisutilizedtodecomposethevibrationsignalsofthegearboxintoaseriesofintrinsicmodefunctions(IMFs)tohighlightthefault-relatedcomponents.TheapproximateentropyofeachIMFisthenextractedasarepresentativefeaturetoquantifythesignalcomplexity.Finally,theTWSVMclassifierisappliedtoaccuratelyclassifythefaultpatternsandachieveeffectivefaultdiagnosis.Experimentalresultsdemonstratethattheproposedapproachcanachievehighaccuracyandefficiencyingearboxfaultdiagnosis. 1.Introduction Gearboxesarewidelyusedinvariousmachinesandmechanicalsystems,andtheirfailurecanleadtocatastrophicconsequences.Therefore,timelyandaccuratefaultdiagnosisisessentialforthemaintenanceandoperationofmachinery.Vibrationanalysisisacommonmethodforgearboxfaultdiagnosisduetoitsnon-intrusivenessandsensitivitytofaults.However,thecomplexandnon-stationarynatureofvibrationsignalsposeschallengesforaccuratefaultdetectionandclassification. 2.EmpiricalModeDecomposition(EMD) EMDisadata-drivensignalprocessingtechniquethatdecomposessignalsintoaseriesofIMFs.Byadaptivelyextractingthecharacteristicoscillatorymodes,EMDeffectivelyseparatesthesignalcomponentsandhighlightsthefault-relatedinformation.Thedecompositionprocessinvolvesextractingahigh-frequencycomponentasthefirstIMFanditerativelyextractingtheremainingIMFs.Inthisstudy,theEMDmethodisappliedtodecomposethegearboxvibrationsignalsintoIMFs,allowingthefault-relatedcomponentstobeeffectivelyanalyzed. 3.ApproximateEntropy Approximateentropyisameasureofsignalcomplexity,indicatingtheirregularityandunpredictabilityofatimeseries.Ithasbeenwidelyusedinfaultdiagnosisduetoitsabilitytocapturesubtlechangesinthesi