预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共24页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

平稳性检验的图示判断进一步的判断: 检验样本自相关函数及其图形 例1例2:该序列具有相同的均值,但从样本自相关图看,虽然自相关系数迅速下降到0,但随着时间的推移,则在0附近波动且呈发散趋势。因此,初步判断,该随机过程是一个是非平稳过程。平稳性的单位根检验也就是说,我们对式Xt=Xt-1+t(*)做回归,如果确实发现=1,就说随机变量Xt有一个单位根。一般地:因此,针对式Xt=+Xt-1+t 我们关心的检验为:零假设H0:=0。 备择假设H1:<0因此,可通过OLS法估计 Xt=+Xt-1+t 并计算t统计量的值,与DF分布表中给定显著性水平下的临界值比较: 如果:t<临界值,则拒绝零假设H0:=0, 认为时间序列不存在单位根,是平稳的。注意:在不同的教科书上有不同的描述,但是结果是相同的。 例如:“如果计算得到的t统计量的绝对值大于临界值的绝对值,则拒绝ρ=0”的假设,原序列不存在单位根,为平稳序列。进一步的问题:在上述使用 Xt=+Xt-1+t 对时间序列进行平稳性检验中,实际上假定了时间序列是由具有白噪声随机误差项的一阶自回归过程AR(1)生成的。 但在实际检验中,时间序列可能由更高阶的自回归过程生成的,或者随机误差项并非是白噪声,这样用OLS法进行估计均会表现出随机误差项出现自相关(autocorrelation),导致DF检验无效。 另外,如果时间序列包含有明显的随时间变化的某种趋势(如上升或下降),则也容易导致上述检验中的自相关随机误差项问题。 为了保证DF检验中随机误差项的白噪声特性,Dicky和Fuller对DF检验进行了扩充,形成了ADF(AugmentDickey-Fuller)检验。ADF检验是通过下面三个模型完成的:实际检验时从模型3开始,然后模型2、模型1。同时估计出上述三个模型的适当形式,然后通过ADF临界值表检验零假设H0:=0。 1)只要其中有一个模型的检验结果拒绝了零假设,就可以认为时间序列是平稳的; 2)当三个模型的检验结果都不能拒绝零假设时,则认为时间序列是非平稳的。 这里所谓模型适当的形式就是在每个模型中选取适当的滞后差分项,以使模型的残差项是一个白噪声(主要保证不存在自相关)。 单整、趋势平稳与差分平稳随机过程一般地,如果一个时间序列经过d次差分后变成平稳序列,则称原序列是d阶单整(integratedofd)序列,记为I(d)。 显然,I(0)代表一平稳时间序列。 现实经济生活中: 1)只有少数经济指标的时间序列表现为平稳的,如利率等; 2)大多数指标的时间序列是非平稳的,如一些价格指数常常是2阶单整的,以不变价格表示的消费额、收入等常表现为1阶单整。 大多数非平稳的时间序列一般可通过一次或多次差分的形式变为平稳的。 但也有一些时间序列,无论经过多少次差分,都不能变为平稳的。这种序列被称为非单整的(non-integrated)。⒉趋势平稳与差分平稳随机过程为了避免这种虚假回归的产生,通常的做法是引入作为趋势变量的时间,这样包含有时间趋势变量的回归,可以消除这种趋势性的影响。1)如果=1,=0,则(*)式成为一带位移的随机游走过程: Xt=+Xt-1+t(**) 根据的正负,Xt表现出明显的上升或下降趋势。这种趋势称为随机性趋势(stochastictrend)。 2)如果=0,0,则(*)式成为一带时间趋势的随机变化过程: Xt=+t+t(***) 根据的正负,Xt表现出明显的上升或下降趋势。这种趋势称为确定性趋势(deterministictrend)。3)如果=1,0,则Xt包含有确定性与随机性两种趋势。随机性趋势可通过差分的方法消除确定性趋势无法通过差分的方法消除,而只能通过除去趋势项消除,