预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

Bootstrap与变权重相结合的多模型综合预测方法 Title:BootstrapandWeightedEnsemblePredictionMethodinCombinationwithMultipleModels Abstract: Theuseofmultiplemodelsinpredictiveanalyticshasshownsignificantpotentialtoimprovetheaccuracyandrobustnessofpredictions.ThispaperaimstoexploretheapplicationoftheBootstrapresamplingtechniqueandweightedensemblepredictionmethodincombinationwithmultiplemodelstofurtherenhancepredictionperformance.TheBootstrapmethodisusedtocreatemultiplebootstrapsamplesfromtheoriginaldataset,andeachsampleisthenusedtotrainadifferentpredictionmodel.Theweightedensemblepredictionmethodassignsdifferentweightstoeachindividualmodel'spredictionsbasedontheirperformanceonvalidationdata.Thefinalpredictionisobtainedbyaggregatingthepredictionsfromallmodels,weightedbytheirrespectiveweights.Experimentalresultsdemonstratethattheproposedapproachoutperformsindividualmodelsandtraditionalensemblemethodsintermsofpredictionaccuracyandrobustness. 1.Introduction: Predictiveanalyticsplaysavitalroleindiversefields,suchasfinance,healthcare,andmarketing,whereaccuratepredictionscanresultinmoreinformeddecision-making.However,individualmodelsoftensufferfromlimitationsincapturingthecomplexityandheterogeneityofreal-worlddata.Combiningmultiplemodelscanhelpovercometheselimitationsandimprovepredictionperformance.ThispaperinvestigatesthecombinationoftheBootstrapresamplingtechniqueandweightedensemblepredictionmethodtoexploittheadvantagesofmultiplepredictivemodels. 2.BootstrapResampling: TheBootstrapmethodinvolvesrandomlyresamplingtheoriginaldatasetwithreplacementtocreatemultiplebootstrapsamples.Eachbootstrapsampleisthenusedtotrainaseparatemodel.ByusingtheBootstrapmethod,weobtainadiversesetofmodels,eachtrainedonslightlydifferentsubsetsofthedata.Thisdiversityhelpstomitigatemodelbiasandimprovegeneralization. 3.WeightedEnsemblePrediction: OncemultiplemodelshavebeentrainedusingtheBootstraptechnique,weneedamethodtocombinetheirpredictionseffectively.Theweightedensemblepredictionapproachassignsdifferentweightstoeachmod