预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

ADE的ReliefF特征选择在高光谱图像分类中的应用 Introduction Featureselectionisoneofthemostimportantpre-processingstepsforhigh-dimensionaldataanalysis.Itiswidelyusedinvariousareassuchasimageclassification,datamining,bioinformatics,andmachinelearning.ReliefFisawell-knownfeatureselectiontechniquethathasbeenwidelyusedinmanyapplications.ThispaperaimstoexploretheapplicationofReliefFfeatureselectionintheclassificationofhyperspectralimages. HyperspectralImageClassification Hyperspectralimagingisatechniquethatcapturesimagesinmanynarrowandcontiguousspectralbands,providingalargenumberofspectralbandsforeachpixel.Thistypeofimagingcanrevealinformationthatisnotvisibletothehumaneyeandcanbeusedforvariousremotesensingapplicationssuchasmineralexploration,vegetationanalysis,andenvironmentalmonitoring. Classificationofhyperspectralimagesisachallengingtaskduetothehighdimensionalityofthedata.Eachpixelintheimagecanhavehundredsoreventhousandsofspectralbands,whichmakesitdifficulttoextractmeaningfulinformationanddifferentiatebetweendifferentclasses.Thus,featureselectiontechniquesarenecessarytoreducethedimensionalityofthedataandimprovetheperformanceofclassificationalgorithms. ReliefFFeatureSelection TheReliefFalgorithmisatypeoffilter-basedfeatureselectionmethodthatseekstoidentifythemostrelevantfeaturesforagivenclassificationtask.Itworksbycomputingaweightforeachfeaturebasedonitsabilitytodiscriminatebetweendifferentclasses. Specifically,theReliefFalgorithmrandomlyselectstwoinstances,onefromeachofthetwodistinctclasses,andcalculatesthedifferencebetweenthefeaturevaluesfortheseinstances.Thealgorithmthenupdatestheweightsforthefeaturesbasedonthemagnitudeofthesedifferences.Thisprocessisrepeatedformultipleinstances,andthefinalweightsarecalculatedastheaveragedifferenceoverallinstances. Comparedtootherfeatureselectionalgorithms,ReliefFhasseveraladvantages.Itiscomputationallyefficient,canhandlenoisydata,andisrobusttothecurseofdimensionality.Thesefeaturesmakeitanidealcandidatefortheclassificationofhyperspectralimages. Applica