预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

求解对流扩散方程的Haar小波方法(英文) HaarWaveletMethodforSolvingConvection-DiffusionEquation Introduction Theconvection-diffusionequationisafundamentalpartialdifferentialequationthatarisesfrequentlyinphysicalandengineeringapplications.Theequationcombinesboththeeffectsofdiffusionandadvection,whichmakesitssolutionachallengingtask.Severalnumericalmethodshavebeendevelopedtosolvetheconvection-diffusionequation.Inthispaper,wepresenttheHaarwaveletmethodforsolvingtheconvection-diffusionequation. HaarWaveletMethod Haarwaveletsaremathematicalfunctionsthatbelongtothefamilyoforthogonalwavelets.Theyareusedinsignalprocessingandnumericalanalysisfortheirexcellentpropertiessuchasorthogonality,compactsupport,andmultiresolution.Haarwaveletisdefinedasfollows: (1)ψ(x)={1for0≤x<1/2;-1for1/2≤x<1;0otherwise} TheHaarwaveletfunctioncanbetranslatedandscaledasfollows: (2)ψ(a,b)(x)=(1/√a)ψ((x-b)/a) Here,aandbarescalingandtranslationparameters,respectively.Scalingparameteraisusedtochangethefrequencyofthewavelet,whilethetranslationparameterbisusedtoshiftthewaveletalongthex-axis. Tosolvetheconvection-diffusionequation,wefirstdiscretizeitusingafinitedifferencemethod.Then,weusetheHaarwaveletmethodtosolvetheresultingsystemofequations.Letusconsidertheone-dimensionalconvection-diffusionequation: (3)∂u/∂t+c∂u/∂x=D∂^2u/∂x^2 Here,u(x,t)isthedependentvariable,cistheconvectioncoefficient,Disthediffusioncoefficient,andtisthetime.Wediscretizetheequationusingafinitedifferencemethodasfollows: (4)(u_i^(n+1)-u_i^n)/Δt+c(u_i^n-u_{i-1}^n)/Δx=D(u_{i+1}^n-2u_i^n+u_{i-1}^n)/Δx^2 Here,iisthespatialindex,andnisthetimestep. Then,weapplytheHaarwaveletmethodbyexpressingthesolutionu(x,t)asalinearcombinationofHaarwaveletsasfollows: (5)u(x,t)=∑_{i,j=0}^{2^N-1}u_{i,j}^nψ((x-i2^kΔx)/2^k) Here,u_{i,j}^nisthecoefficientoftheHaarwaveletfunctionψ((x-i2^kΔx)/2^k)atthei-thspatiallocationandj-thresolutionlevelatthen-thtimestep.Nisthenumberofspatialdiscretizationpoints,kistheresolutionlevel,andΔxisthespatialstepsize. Substitutingequation(5)intoequati