预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

并行粒子群算法及其在水库群优化调度中应用 Title:ParallelParticleSwarmOptimizationAlgorithmanditsApplicationinReservoirGroupOptimizationScheduling Introduction: Waterresourcesmanagementplaysacrucialroleinensuringthesustainabledevelopmentofaregion.Reservoirgroupoptimizationschedulingisacomplexproblemthatrequiresfindingtheoptimalstrategyforoperatingmultiplereservoirstomeetvariousobjectives,suchasfloodcontrol,watersupply,andhydropowergeneration.Inrecentyears,theParticleSwarmOptimization(PSO)algorithmhasgainedpopularityduetoitsabilitytosolveoptimizationproblemseffectively.ThispaperdiscussestheapplicationofaparallelPSOalgorithminreservoirgroupoptimizationscheduling. 1.ParticleSwarmOptimization(PSO): 1.1BasicPrinciplesofPSO: PSOisapopulation-basedoptimizationalgorithminspiredbythemovementofbirdflocksorfishschools.Thealgorithmconsistsofmultipleparticlesthatrepresentcandidatesolutionstotheoptimizationproblem.Eachparticleadjustsitspositionbasedonitspreviousbestsolutionandtheglobalbestsolutionfoundbyanyparticleinthepopulation.PSOreliesontheideaofsociallearning,whereparticlesinteractandcommunicatetoexplorethesearchspaceefficiently. 1.2VariantsofPSO: SeveralvariantsofPSOhavebeendevelopedtoimproveitsperformance.TheseincludeadaptivePSO,multi-objectivePSO,hybridPSO,andparallelPSO.Inthispaper,wefocusontheparallelPSOalgorithm,whichexploitsthepowerofparallelcomputingtoenhancethesearchcapabilitiesoftheoptimizationprocess. 2.ParallelPSOinReservoirGroupOptimizationScheduling: 2.1ProblemFormulation: Reservoirgroupoptimizationschedulinginvolvesfindingtheoptimalreleasepoliciesformultipleinterconnectedreservoirstoachievedesiredobjectivessuchasfloodcontrol,watersupply,andpowergeneration.Theproblemcanbeformulatedasamulti-objectiveoptimizationproblem,whereconflictingobjectivesneedtobebalanced. 2.2ParallelPSOImplementation: TheparallelPSOalgorithmcaneffectivelytacklethereservoirgroupoptimizationschedulingproblembyutilizingthecomputationalpowerofparallelcomputingsystems.Thealgorithminvolvesdividingtheswarmintosub-swa