预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于均方误差的集粒子云自适应均衡算法(英文) Introduction TheCloud-basedAdaptiveEqualizationAlgorithmforParticleSwarmOptimizationBasedonMeanSquareErrorisakeyconsiderationtooptimizeParticleSwarmOptimization(PSO)algorithms.Thealgorithmisdesignedtoautomaticallyequalizetheselectionofsolutionsinthecloud,inaccordancewiththeMeanSquareError(MSE).ThealgorithmisadoptedasacomprehensivesolutionforimprovingthePSOalgorithm,withafocusonaddressingthefundamentalissuesofoptimization:theselectionandarrangementofsolutionelementsandthedistributionofcognitiveandsocialrelationshipfactors.ThispaperpresentsanoverviewandanalysisoftheCloud-basedAdaptiveEqualizationAlgorithmforParticleSwarmOptimizationBasedonMeanSquareError. Background Cloudcomputingisemergingtechnologythathasgainedtremendouspopularityatagloballevel.Cloud-basedplatformsoffermanyadvantages,suchascostsavings,increasedcomputingpower,high-performancecapabilities,flexibility,andscalability.Theincreasingpopularityofcloud-basedserviceshasalsoledtotheparallelemergenceofbigdatasets.Thesedatasetscomewithincreasingvolumes,velocity,andvariety,presentingsignificantchallengesfordataanalysisandoptimization.ParticleSwarmOptimization(PSO)algorithmsofferaviablesolutionforsolvingtheproblembyallowingdistributedoptimization,parallelprocessing,andreducingthechancesoflocaloptima,therebyimprovingthealgorithm'sconvergence. Despitethecriticaladvantagesofthealgorithm,thereareseveralconcernsthatneedtobeaddressed.OneofthemainproblemswithPSOalgorithmsisthattheydependheavilyontheabilitytoevenlydistributethesolutionsacrossthecloud.Thisdependency,ofequalizingsolutions,leadstotheneedforrunningandanalyzingmultipleoptimizationruns,whichcanbetime-consumingandresource-intensive. ProposedAlgorithm TheCloud-basedAdaptiveEqualizationAlgorithmforParticleSwarmOptimizationBasedonMeanSquareErroralgorithmoffersacustomizedsolutiontomitigatethechallengesassociatedwiththetraditionalPSOalgorithm.Thealgorithmcomprisesthreeseparatesteps:datapreprocessing,dataequalization,andoptimization. Thefirstste