基于支持向量机与自扩展的实体关系抽取方法.docx
快乐****蜜蜂
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
基于支持向量机与自扩展的实体关系抽取方法.docx
基于支持向量机与自扩展的实体关系抽取方法介绍实体关系抽取是自然语言处理中的一个重要任务,其目标是从自然语言文本中提取出实体之间的关系。实体关系识别在许多应用程序中具有广泛的应用,如信息提取、知识图谱构建和智能问答等领域。本文提出了一种基于支持向量机(SupportVectorMachine,SVM)和自扩展(Self-Expansion)的实体关系抽取方法,该方法在在实体关系抽取任务中具有很高的准确性和鲁棒性。方法基于支持向量机的实体关系抽取方法是一种经典的模式识别方法,其主要思想是使用一个核函数将特征空
基于机器学习的实体关系抽取方法.docx
基于机器学习的实体关系抽取方法摘要实体关系抽取是自然语言处理领域的重要问题之一,它能够对文本中的实体之间的关系进行自动化识别和提取,并为其他应用程序提供语义支持。基于机器学习的实体关系抽取方法在近年来取得了很大的进展,本文概述了这种方法的关键步骤、技术和算法,分别从数据预处理、特征提取和分类器设计等角度进行阐述,并综述了当前在实体关系抽取领域研究的最新成果和未来发展方向。本文的目的在于为研究者和开发者提供更深入的了解,以推动实体关系抽取技术的发展和应用。关键词:实体关系抽取、机器学习、数据预处理、特征提取
基于ResCNN的实体关系抽取方法研究.docx
基于ResCNN的实体关系抽取方法研究标题:基于ResCNN的实体关系抽取方法研究摘要:随着社交媒体和互联网应用的兴起,海量文本信息中蕴含着大量实体之间的关系,实体关系抽取成为了自然语言处理的重要研究方向之一。本文针对实体关系抽取问题,提出了一种基于ResidualConvolutionalNeuralNetwork(ResCNN)的实体关系抽取方法。通过引入ResCNN的残差连接和卷积操作,实现了高效且准确的实体关系抽取。在多个公开数据集上进行了实验验证,并与其他方法进行了对比,实验结果表明,我们的方法
基于关系导向的实体关系联合抽取方法及系统.pdf
本发明属于自然语言处理技术领域,特别涉及一种基于关系导向的实体关系联合抽取方法及系统,对目标文本中句子进行编码,获取目标文本中句子向量表示;针对句子向量表示,利用关系抽取模块抽取目标文本中所包含的关系类型;将抽取的关系类型作为先验知识与目标文本句子中词向量表示进行融合,利用实体识别模块来识别目标文本中与抽取的关系类型对应的实体。本发明能够减少对无关实体的关注,避免抽取冗余实体,进而对识别出的多个关系类型分别识别其对应的实体对,解决实体重叠问题,最终抽取出句子中所包含的全部实体关系三元组,提升实体关系识别准
基于实体森林的实体语义关系联合抽取方法及系统.pdf
本发明提出一种基于实体森林的实体语义关系联合抽取方法和系统,包括:获取待识别实体语义关系的语料;得到句子及其对应的词序列,对句子的词序列进行编码,得到训练语料中句子的分布式表示;句子的分布式表示进行序列标注,得到实体头部,作为实体树的根节点,以根节点为循环神经网络模型的初始状态,依次输入句子中子词至循环神经网络模型,以森林的形式识别嵌套实体,得到多棵嵌套实体树;将嵌套实体树的实体表示输入TransformerDecoder模块,通过多头注意力机制,得到嵌套实体树中包含实体树间交互信息、实体和输入文本之间