预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于小波神经网络的电网负荷预测 Introduction Electricitydemandforecastingisanimportantaspectofpowersystemplanningandoperation.Accurateandreliableforecastsofelectricitydemandcanhelppowersystemoperatorsmakeinformeddecisionsaboutthedispatchofelectricitygeneration,theschedulingofmaintenanceactivities,andthemanagementofsystemreliability.Therearemanydifferentmethodsthatcanbeusedtoforecastelectricitydemand,includingstatisticalmodels,machinelearningalgorithms,andphysics-basedmodels.Inrecentyears,therehasbeengrowinginterestintheuseofartificialneuralnetworks(ANNs)forelectricitydemandforecastingduetotheirabilitytomodelcomplexnonlinearrelationshipsbetweeninputandoutputvariables. OnetypeofANNsthathasreceivedparticularattentioninrecentyearsisthewaveletneuralnetwork(WNN).WNNscombinethepowerofANNswiththeabilitytoanalyzesignalsinboththetimeandfrequencydomainsprovidedbywavelettransforms.Inthispaper,wepresentaWNN-basedmethodforelectricitydemandforecastingthatcaneffectivelycapturethetime-varyingandnon-stationarycharacteristicsofthedemandsignal. Methodology Theproposedmethodconsistsoffourmaincomponents:datapreprocessing,featureextraction,modeltraining,andmodelevaluation.Thedetaileddescriptionofeachcomponentisasfollows: DataPreprocessing:Inthisstep,therawelectricitydemanddataispreprocessedtoremoveanyoutliers,missingvalues,andseasonaltrends.Thepreprocessingstepalsoinvolvesscalingandnormalizationofthedatatoensurethatallinputvariablesareonthesamescale. FeatureExtraction:Thewavelettransformisusedtodecomposethepreprocesseddemanddataintomultiplefrequencybands,eachrepresentingadifferentleveloftemporalandspectralresolution.Thedecomposedsignalisthentransformedintoasetoffeaturesthatrepresentthedominantfrequencycomponentsofthesignalateachresolutionlevel. ModelTraining:TheWNNistrainedontheextractedfeaturesusingabackpropagationalgorithm.TheWNNconsistsofamultilayerfeedforwardnetworkwithwaveletactivationfunctionsineachlayer.Thetrainingalgorithmadjuststheweightsandbiasesofthenetworktominimizetheerrorbetweenthepredicted