预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于灰色神经网络的油料储备预测模型研究 Introduction Thepredictionofoilreserveisanimportantaspectofenergymanagement.Basedonaccurateprediction,governmentandorganizationscanplanandexecutetheirpoliciesandstrategiesrelatedtooilmanagement,production,andexploration.Thepredictionofoilreservecanbechallengingduetothehighlevelofuncertaintyassociatedwithoil-welldrillingandproduction.Inthispaper,weproposeanovelapproachtopredicttheoilreservebasedontheGrayNeuralNetwork(GNN). Background TheGNNisapowerfultoolforpredictionbasedonanalysisofdatasetsthatareincompleteorhaveincompleteinformation.TheGNNisacombinationoftheGrayModel(GM)andtheArtificialNeuralNetwork(ANN).TheGMapproachisusedtopreprocessdatasetsthatareincomplete,whereastheANNisusedtomodeltherelationshipsbetweentheinputandoutputvariables.Bycombiningthesetwoapproaches,theGNNisabletopredictaccurately,evenincaseswheretraditionalmethodsmayfail. OilReservePredictionwithGNN ThepredictionmodelforoilreserveusingGNNinvolvesthefollowingsteps: Step1:Datacollection.Thefirststepistocollectdatarelatedtooilproduction,oil-welldrilling,andexploration.Thedatacollectedincludesinformationonoilwelldepth,location,geologicalstructure,drillingtechnology,andwatercut. Step2:DataprocessingwithGM.ThesecondstepistopreprocessthedatausingGM.TheGMapproachisusedtoidentifyandremoveanyirrelevantorredundantdata.TheGMmodelisusedtoestimatethetrendofthecollecteddataandtheoveralltrendofoilreserveestimation. Step3:DatamodelingwithANN.Thethirdstepistotrainaneuralnetworkusingtheprocesseddata.Theneuralnetworkistrainedusingbackpropagationtomodeltherelationshipsbetweentheinputandoutputvariables.Theinputvariablesincludedepth,geologicalstructure,drillingtechnology,andwatercut,andtheoutputvariableistheoilreserve. Step4:Testingandvalidation.Finally,themodelistestedandvalidatedusingdatasetsthatwerenotusedfortraining.ThemodelisevaluatedusingcommonstatisticalmeasuressuchasMeanSquareError(MSE),RootMeanSquareError(RMSE),andMeanAbsoluteError(MAE). Conclusion Inthispaper,weproposedanovelapproachforpredi