预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于PAM聚类方法的RBF神经网络设计 基于PAM聚类方法的RBF神经网络设计 Abstract RecurrentNeuralNetworks(RBF)havebeenwidelyusedinthefieldofpatternrecognitionandfeaturerecognitionbecauseoftheirexcellentperformanceinnonlinearmapping.Atthesametime,PAMclusteringalgorithmhasbeenwidelyusedindataclustering,whichcaneffectivelyachievethegoalofminimizingintra-clusterdistanceandinter-clusterdistance.Inthispaper,thePAMclusteringalgorithmiscombinedwiththeRBFneuralnetworktodesignanefficientpatternrecognitionsystem. Introduction Withthecontinuousdevelopmentofscienceandtechnology,datahasbecomeanincreasinglyimportantresource.Inordertomakebetteruseofdataresources,itisnecessarytocarryoutdataminingandpatternrecognition.RBFneuralnetworkisakindoffeedforwardneuralnetworkbasedontheprinciplesofstatistics,mathematicsandcomputationallogicthatiswidelyusedinpatternrecognition.PAMclusteringalgorithmisaclassicclusteringalgorithmthatcaneffectivelyidentifytheclusteringofdata.Bycombiningthetwo,wecandesignanefficientpatternrecognitionsystem. TheprincipleofPAMclusteringalgorithm PAMclusteringalgorithm,alsoknownaspartitioningclusteringalgorithm,isawidelyusedclusteringalgorithmindatamining.Itscoreidealiesinthecomprehensiveconsiderationofintra-clusterdistancesandinter-clusterdistances,andidentifyingtheclusteringofdatabyiterativelyupdatingandoptimizingtheclusteringstructure. TheprincipleofRBFneuralnetwork RBFneuralnetworkisakindoffeedforwardneuralnetwork.Itsbasicstructureismainlycomposedofinputlayer,hiddenlayerandoutputlayer.Theinputlayeracceptstheinputdata,andthehiddenlayeriscomposedofaseriesofradialbasisfunctions.Theoutputlayerisresponsibleforoutputtingtheresults.RBFneuralnetworkhastheadvantagesoffastconvergence,goodgeneralizationabilityandstrongnonlinearmappingability. ThedesignofRBFneuralnetworkbasedonPAMclusteringalgorithm InthedesignofRBFneuralnetworkbasedonPAMclusteringalgorithm,thePAMclusteringalgorithmisappliedtothetrainingset,andtheclusteringstructureofthetrainingsetisidentified.Then,accordingtotheclusteringstructure,thecenter