预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于Kohonen网络的点群综合研究(英文) ResearchonPointCloudSynthesisBasedonKohonenNetwork Abstract: Pointcloudsynthesisisanessentialresearchtopicincomputerscienceandengineering.Kohonennetworkisapopularmethodforpointcloudsynthesis.Inthisresearch,weinvestigatetheapplicationofKohonennetworkinpointcloudsynthesis. WedesignaframeworkforpointcloudsynthesisbasedonKohonennetworkandevaluateitsperformanceusingvariousmetrics.OurresultsindicatethattheKohonennetworkmethodishighlyeffectiveingeneratinghigh-qualitypointclouds. Introduction: Pointcloudisanessentialdataformatfor3Dmodelingandcomputervisiontasks.Pointcloudsynthesisreferstothegenerationofnewpointcloudsbasedonexistingones.Thistechniqueisincreasinglypopularforgeneratingrealistic3Dmodelsofobjects,buildings,andlandscapes.TheKohonennetwork,alsoknownastheself-organizingmap(SOM),isamachinelearningalgorithmthatmimicsthestructuralorganizationofthehumanbrain.Thisneuralnetworkhasbeenwidelyappliedinimageprocessing,patternrecognition,anddataanalysis. Methods: ToapplytheKohonennetworktopointcloudsynthesis,wedesignaframeworkconsistingoffourmainstages:datapreprocessing,networkconfiguration,training,andpointcloudgeneration.Inthedatapreprocessingstage,wereadandpreprocesstheinputpointcloudsbyremovingoutliers,normalizingthepointcoordinates,andconvertingthemtoasuitableformat.Inthenetworkconfigurationstage,wedesignatopologyoftheKohonennetworkandspecifyitshyperparameters,suchasthelearningrate,neighborhoodfunction,andnumberofoutputnodes.Inthetrainingstage,weusetheinputpointcloudstotraintheKohonennetworkbyadjustingthesynapticweights.Finally,inthepointcloudgenerationstage,wegeneratenewpointcloudsbysamplingtheoutputnodesoftheKohonennetworkandapplyingadecodingfunction. Results: WeevaluatetheperformanceoftheKohonennetworkmethodforpointcloudsynthesisusingvariousmetrics,suchasroot-mean-squareerror(RMSE),Chamferdistance,andvisualinspection.OurresultsindicatethattheKohonennetworkmethodishighlyeffectiveingeneratinghigh-qualitypointcloudsthatarevisuallyandstructurallysim