预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于交互多模型的水下目标跟踪方法(英文) Underwatertargettrackingisanimportantresearchareainunderwaterroboticsandmarineengineering.Inrecentyears,therehasbeenagrowingdemandforaccurateandreliabletrackingofunderwatertargetsinvariousapplicationssuchasunderwaterexploration,surveillance,andmining.Oneofthemajorchallengesinunderwatertargettrackingisthecomplexityoftheunderwaterenvironment,whichpresentsmanyobstaclesanduncertainties,suchaswatercurrents,turbulence,andseafloortopography.Toaddressthesechallenges,researchershaveproposedvariousmethodsandtechniquesforunderwatertargettracking,includingsonar-basedmethods,vision-basedmethods,andhybridmethodsthatcombinemultiplesensingmodalities. Inthispaper,weproposeanovelunderwatertargettrackingmethodbasedoninteractivemultimodalsensing.Themethodintegratesmultipleunderwatersensingmodalities,includingsonar,vision,andhydrodynamicsensors,toachieverobustandaccuratetargettrackingincomplexunderwaterenvironments.Themethodaimstoleveragethestrengthsofeachsensingmodalityandcompensatefortheirweaknessesbyenablingeffectiveinteractionandfusionoftheirdata. Theproposedmethodconsistsofthreemainmodules:sensing,fusion,andtracking.Thesensingmodulecollectsdatafromthemultiplesensingmodalitiesandprocessesthemtoextractrelevantfeaturesandcuesfortargetlocalizationandtracking.Thefusionmoduleintegratestheinformationfromthedifferentsensingmodalitiesbyusingaprobabilisticdatafusionframeworkthatcombinestherelativeadvantagesofeachmodalityandprovidesamoreaccurateandcomprehensiverepresentationofthetarget'sstate.Finally,thetrackingmoduleusesthefuseddatatoestimatethetarget'strajectoryandupdateitspositionovertime. Theproposedmethodhasseveraladvantagescomparedtoexistingmethods.First,itenablesrobusttargettrackingeveninthepresenceofenvironmentaluncertainties,suchaswatercurrentsandturbulence,byusingmultiplesensingmodalitiesthatarelesssensitivetothesefactors.Second,itprovidesaricherandmorecompleterepresentationofthetarget'sstatebycombiningthecomplementaryinformationfromdifferentsensingmodalities,wh