预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于GPU的LARED-P算法加速 Introduction TheLARED-Palgorithmisapopularclusteringalgorithmusedinmachinelearningapplications.Oneofthemajorchallengeswithimplementingthisalgorithmisthecomputationaltimerequired,especiallywhenhandlinglargedatasets.Inrecentyears,theuseofgraphicsprocessingunits(GPUs)hasemergedasapowerfulsolutiontothisproblem.Inthispaper,wediscusshowGPU-basedLARED-PalgorithmaccelerationcanimprovetheefficiencyofLARED-Pclustering. Background TheLARED-Palgorithmisaclusteringmethodthatutilizesapartitioningtechniquetodividelargedatasetsintosmaller,moremanageablegroups.Thisisachievedthroughaseriesofiterationsthatassigneachdatapointtoaparticularclusterbasedonadistancemetric.Thealgorithmthenrecalculatesthecentroidofeachcluster,andrepeatstheprocessuntilconvergenceisachieved. Whilethisapproachiseffective,itrequiresasignificantamountofcomputationalresourcestohandlelargedatasets.Thisislargelyduetotherepeatedrecalculationofclustercentroids,whichcanbetime-consumingonacentralprocessingunit(CPU). Solution GPUsprovideahighlyparallelarchitecturethatcangreatlyacceleratetheLARED-Palgorithm.ByoffloadingthecomputationallyintensivepartsofthealgorithmtotheGPU,theCPUisfreeduptohandleothertasks,resultinginsignificantlyfasterperformance. TheparallelprocessingcapabilitiesofGPUsallowformultipledatapointstobeprocessedsimultaneously,greatlyreducingthetotaltimerequiredforclustering.Additionally,GPUscanperformcalculationsonfloating-pointnumbersmuchfasterthanCPUs,furtherimprovingtheoverallperformanceofthealgorithm. Implementation ToimplementtheGPU-basedLARED-Palgorithmacceleration,weusedtheCUDAprogramminglanguage.CUDAisaparallelcomputingplatformthatprovidesdeveloperswithaneasy-to-useinterfaceforprogrammingGPUs. OurimplementationinvolvedbreakingdownthealgorithmintosmalleroperationsthatcouldbeperformedinparallelontheGPU.Thisincludedthecalculationofdistancesbetweendatapointsandtherecalculationofcentroids. Toensureoptimalperformance,weutilizedsharedmemoryontheGPUtoreducememoryaccesstimes,andalsousedthread