预览加载中,请您耐心等待几秒...
1/9
2/9
3/9
4/9
5/9
6/9
7/9
8/9
9/9

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

必考问题18统计及其与概率的交汇问题 (2012·广东)某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100]. (1)求图中a的值; (2)根据频率分布直方图,估计这100名学生语文成绩的平均分; (3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数. 分数段[50,60)[60,70)[70,80)[80,90)x∶y1∶12∶13∶44∶5解(1)由频率分布直方图知(2a+0.02+0.03+0.04)×10=1,解得a=0.005. (2)由频率分布直方图知这100名学生语文成绩的平均分为55×0.005×10+65×0.04×10+75×0.03×10+85×0.02×10+95×0.005×10=73(分). (3)由频率分布直方图知语文成绩在[50,60),[60,70),[70,80),[80,90)各分数段的人数依次为0.005×10×100=5,0.04×10×100=40,0.03×10×100=30,0.02×10×100=20. 由题中给出的比例关系知数学成绩在上述各分数段的人数依次为5,40×eq\f(1,2)=20,30×eq\f(4,3)=40,20×eq\f(5,4)=25. 故数学成绩在[50,90)之外的人数为100-(5+20+40+25)=10. 本部分主要考查随机抽样、样本估计总体、线性回归分析,独立性检验的简单应用,一般是选择题、填空题,试题难度中等或稍易.若以解答题出现,往往与概率、交汇考查. 在复习统计问题时,要紧紧抓住这些图表和方法,把图表的含义弄清楚,这样剩下的问题就是有关的计算和对统计思想的理解,在弄清楚统计问题的基础上,要与概率、期望、方差结合掌握. 必备知识 抽样方法 抽样方法包含简单随机抽样、系统抽样、分层抽样三种方法,三种抽样方法都是等概率抽样,体现了抽样的公平性,但又各有其特点和适用范围. 用样本估计总体 (1)利用样本频率分布估计总体分布: ①频率分布表和频率分布直方图;②总体密度曲线;③茎叶图. (2)用样本的数字特征估计总体的数字特征: ①众数、中位数; ②样本平均数eq\x\to(x)=eq\f(1,n)(x1+x2+…+xn)=eq\f(1,n)eq\i\su(i=1,n,x)i; ③样本方差s2=eq\f(1,n)[(x1-eq\x\to(x))2+(x2-eq\x\to(x))2+…+(xn-eq\x\to(x))2]=eq\f(1,n)∑n,i=1(xi-eq\x\to(x))2; ④样本标准差 s=eq\r(\f(1,n)[x1-\x\to(x)2+x2-\x\to(x)2+…+xn-\x\to(x)2]) =eq\r(\f(1,n)\i\su(i=1,n,)xi-\x\to(x)2). 线性回归方程 方程eq\o(y,\s\up6(^))=bx+a称为线性回归方程,其中b=eq\f(\i\su(i=1,n,x)iyi-n\x\to(x)\x\to(y),\i\su(i=1,n,x)\o\al(2,i)-n\x\to(x)2) a=eq\x\to(y)-beq\x\to(x);(eq\x\to(x),eq\x\to(y))称为样本中心点. 独立性检验 假设有两个分类变量X和Y,它们的可能取值分别为{x1,x2}和{y1,y2},其样本频数列联表(称为2×2列联表)为: 2×2列联表 y1y2总计x1aba+bx2cdc+d总计a+cb+da+b+c+d构造一个随机变量K2=eq\f(nad-bc2,a+bc+da+cb+d), P(K2≥k)0.1000.0500.0250.0100.001k2.7063.8415.0246.63510.828必备方法 用样本估计总体 (1)在频率分布直方图中,各小长方形的面积表示相应的频率,各小长方形的面积的和为1.解决与频率分布直方图有关的问题时,应正确理解已知数据的含义,掌握图表中各个量的意义. (2)当总体的个体数较少时,可直接分析总体取值的频率分布规律而得到总体分布;当总体容量很大时,通常从总体中抽取一个样本,分析它的频率分布,以此估计总体分布. ①总体期望的估计,计算样本平均值eq\x\to(x)=eq\f(1,n)eq\i\su(i=1,n,x)i; ②总体方差(标准差)的估计:方差=eq