预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于UKF的参数和状态联合估计 Introduction Inmanyengineeringapplications,itisessentialtoestimateboththeparameterandthestateofasystem.Theparametercanrepresentthecharacteristicsofthesystem,andthestaterepresentsthecurrentconditionsofthesystem.Theparameterandstateareoftenlinkedtoeachotherthroughequations,andonecanestimatethemsimultaneouslyusingajointestimationapproach.Inthispaper,wewilldiscusstheUnscentedKalmanFilter(UKF)methodforjointparameterandstateestimation.WewillfirstintroducethebasicconceptofUKF,andthendiscusshowitcanbeappliedtojointestimation.WewillalsocomparetheUKFmethodwithothertraditionalapproachesanddemonstrateitsadvantagesthroughsimulationexamples. Background TheKalmanFilter(KF)isawell-establishedmethodforstateestimation.Givenasystem'sdynamicmodelandmeasurementmodel,theKFestimatesthesystem'sstatebasedonmeasurements.TheKFisoptimalwhenthesystemislinearandGaussian.However,inmanycases,thesystemisnonlinear,andtheKFcannotbeapplieddirectly.TheExtendedKalmanFilter(EKF)extendstheKFtononlinearsystemsbylinearizingthesystemdynamicsandmeasurementmodels.However,theEKFisbasedontheassumptionofGaussiannoise,whichmaynotalwaysbevalidinpractice.TheUnscentedKalmanFilter(UKF)wasintroducedtosolvetheseproblems.TheUKFusesasetofsigmapointstorepresentthenon-Gaussiandistributionandpropagatesthemthroughnonlinearfunctions.TheUKFdoesnotrequirelinearizationandcanhandleGaussianandnon-Gaussiannoise. TheUKFiswidelyusedinmanyfields,suchasrobotics,aerospace,andsignalprocessing.However,insomeapplications,bothmodelparametersandsystemstatesneedtobeestimatedsimultaneously.Thejointestimationproblemismorechallengingthantraditionalstateestimationbecausetheparametersaffectthesystemdynamicsandmeasurementmodels.TheJointUKF(JUKF)methodwasdevelopedtosolvethisproblem.TheJUKFconsiderstheparametersaspartofthestatevector,andestimatesboththestateandparametersiteratively. Methodology TheUKFalgorithmconsistsoftwosteps:predictionandupdate.Inthepredictionstep,theUKFestimatesthesystem'sstatebasedonthepreviousstateestimateandthed