预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一种改进扩展卡尔曼滤波新方法 Title:AnImprovedExtendedKalmanFilter:ANovelApproach Abstract: TheExtendedKalmanFilter(EKF)isawidelyusedfilteringtechniquecapableofestimatingthestateofanonlineardynamicsystem.However,ithascertainlimitations,suchassensitivitytoinitializationandnonlinearityassumptions.Inthispaper,weproposeanimprovedExtendedKalmanFilter(IEKF)algorithmthataddressestheselimitationsandprovidesmoreaccuratestateestimation.TheIEKFincorporatesamodifiedupdatestepandanewstatepredictionmethod,leadingtoimprovedconvergenceandreducedsensitivitytoinitialization.SimulationresultsdemonstratethesuperiorperformanceoftheIEKFcomparedtothetraditionalEKFinvariousnonlineardynamicsystems. Introduction: TheExtendedKalmanFilter(EKF)isanextensionoftheclassicKalmanFilterdesignedtohandlenonlineardynamicsystems.Itapproximatesthenonlinearsystemdynamicsusinglinearizationtechniques.TheEKFhasprovedeffectiveinnumerousapplications,suchasrobotics,aerospace,andtrackingsystems.However,itsperformancecanbecompromisedinsituationswithhighnonlinearityorinaccurateinitialization.Inthispaper,wepresentanimprovedversionoftheEKF,theImprovedExtendedKalmanFilter(IEKF),toovercometheselimitations. Methodology: TheproposedIEKFalgorithmimprovestheEKFbyincorporatingtwomajormodifications:amodifiedupdatestepandanewstatepredictionmethod. 1.ModifiedUpdateStep: ThetraditionalEKFusesalinearapproximationofthenonlinearmeasurementfunctionduringtheupdatestep.Thislinearizationcanleadtosuboptimalstateestimation,especiallyinhighnonlinearityscenarios.TheIEKFaddressesthisissuebyiterativelyimprovingthemeasurementupdatecalculation.Insteadofusingalinearizedversionofthemeasurementfunction,theIEKFusesanonlinearfunctiontopredicttheexpectedmeasurement.Ittheniterativelycorrectsthispredictionusingthemeasurementupdateequationuntilconvergenceisachieved.Thisiterativeprocessimprovestheaccuracyofthestateestimation,eveninhighlynonlinearsystems. 2.NewStatePredictionMethod: ThestatepredictionstepofthetraditionalEKFusesalinearizationofthesystemdynamicstoestima