预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

3-RRR平面并联微动机器人的运动学分析 Introduction: Theconceptofparallelrobotshasrevolutionizedthefieldofroboticsbyofferinghighprecision,high-speed,andaccuracywhileminimizingdeflectionandfatigue.RRRparallelmanipulatorsarethemostcommonlyusedrobotsintoday'sindustryfortheirflexibilityofimplementationanditssimplekinematics.Thispaperaimstodiscussthekinematicanalysisofa3-RRRparallelrobot. KinematicsAnalysis: The3-RRRparallelrobotisasix-degree-of-freedommechanismthatconsistsofthreelinks,threerevolutejoints,andthreeprismaticjoints.Eachlinkconsistsofacylindricalrodwithoneendconnectedtoarevolutejointandtheotherendconnectedtoaprismaticjoint.Thethreerevolutejointsareconnectedtoacommonfixedbase,andthethreeprismaticjointsareconnectedtoanend-effector.Thelinksareconnectedattheintersectionoftheiraxes,formingatriangularpyramidalframework. Theinversekinematicanalysisofthe3-RRRparallelrobotinvolvesdeterminingthejointanglesthatwillresultinaspecificend-effectorposition.Themathematicalformulationoftheinversekinematicsproblemrevealsthatthereisnoclosed-formsolution.Therefore,theforwardkinematicsofthe3-RRRparallelrobotmustbereviewedinordertodeterminetheend-effectorposition. Theforwardkinematicsanalysisofthe3-RRRparallelrobotdeterminesthepositionandorientationoftheendeffectorbasedonthejointanglesandlinklengths.Thefollowingstepscanbetakeninordertoderivetheforwardkinematicequations: 1.Assignacoordinateframetoeachlink,onefixedtothebaseandtheotherthreeattachedtothecylindricalrods. 2.DerivethetransformationmatricesforeachlinkusingtheDenavit-Hartenbergnotation. 3.Determinethelocationoftheend-effectorinreferencetothebasecoordinateframeusingachainoftransformationsofeachlink. Forthe3-RRRparallelrobot,theforwardkinematicscanbederivedusingthefollowingequations: x=(l2*cos(q1)*cos(q2)+l3*cos(q1)*cos(q2)*cos(q3)+l1*cos(q1)*sin(q2)+l2*cos(q2)*sin(q1)+l3*cos(q3)*sin(q1)*sin(q2))*(l3^2-(l1*sin(q2)+l2*sin(q1))^2)^0.5/((l1*sin(q2)+l2*sin(q1))^2+l3^2*cos(q3)^2)^0.5 y=(l2*cos(q2)*sin(q1)+l3*sin(q1)*sin(q2)*sin(q3)+l1*cos(q2)*sin(