预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

解大型线性方程组的轮换重新开始Krylov子空间方法(英文) Introduction: Linearequationsareencounteredinvariousscientificandengineeringproblems.Often,thenumberoflinearequationsisverylarge,makingthedirectmethodsforsolvingtheminfeasible.Hence,iterativemethodsareusedforsolvinglargelinearequationsystems.Krylovsubspacemethodsareoneofthemoststudiediterativemethodsforsolvinglargelinearequationsystems.Amongthem,therestartedKrylovsubspacemethodshavebeenwidelyusedbecauseoftheircomputationalefficiency.TherestartedKrylovsubspacemethodsforsolvinglargelinearequationsystemsarebasedontheideaofperiodicallyrestartingtheiterativeprocessinawaysuchthatthenewsearchdirectionischosenfromthesubspacepreviouslygenerated. Inthispaper,wediscussthecyclicrestartedKrylovsubspacemethodsforsolvinglargelinearequationsystems.WewillfocusonthecyclicArnoldiandGMRESmethodsandtheirimprovedversionswithcyclicrestarts.ThesecyclicrestartKrylovsubspacemethodshaveadvantagesoverconventionalKrylovsubspacemethods,astheycanexploitthecyclicstructureofmanylinearequationsystems. CyclicArnoldiMethod: TheArnoldimethodisawell-knownKrylovsubspacemethodthatconstructsanorthonormalbasisfortheKrylovsubspacegeneratedbyAandagiveninitialvector,v.TheArnoldidecompositioncanbewrittenas: AV_m=V_{m+1}H_m whereV_misthem-dimensionalorthonormalbasismatrixfortheKrylovsubspace,H_misthe(m+1)xmupperHessenbergmatrixandAV_misthematrixthatrepresentstheactionofAonV_m.OncetheArnoldidecompositioniscomputed,wecansolvethelinearequationsystembysolvingthereducedsystem: H_my_m=c wherey_misanm-dimensionalvector,whichcanbeusedtoconstructanapproximatesolutiontotheoriginalequationsystemasx_m=V_my_m ThecyclicArnoldimethodisarestartedversionoftheArnoldimethod,whichrestartstheArnoldiprocesseverymiterations.TherestartedArnoldimethodcanbewrittenas: AV_m=V_{m+1}H_m Then,wecomputeanapproximationtothesolutionfromx_k=V_ky_k,wherey_kisthesolutionofthereducedsystemH_ky_k=c.TheArnoldidecompositionisthenrestartedwiththeresidual,r_k=c-AV_ky_k,astheinitialvector. CyclicGMRESMethod: TheGMRES(General