预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

结合形状先验的图割目标分割方法 Title:ShapePriorGuidedGraphCutforImageSegmentation Abstract: Imagesegmentationplaysacrucialroleinnumerouscomputervisionapplications,suchasobjectrecognition,sceneunderstanding,andmedicalimageanalysis.However,accurateandefficientsegmentationremainschallengingduetothecomplexityanddiversityofimagecontent.Inthispaper,weproposeanovelimagesegmentationmethod,namelyShapePriorGuidedGraphCut,whichleveragestheshapepriorknowledgetoimprovetheaccuracyandrobustnessofthesegmentationresults.Theproposedmethodcombinesthepowerofgraphcutalgorithmsandshapepriorinformationtoachievesuperiorsegmentationperformance.Experimentalresultsdemonstrateitseffectivenessindifferentimagesegmentationtasks. 1.Introduction Imagesegmentationistheprocessofpartitioninganimageintocoherentregionsbasedoncertaincriteriaorconstraints.Itisafundamentaltaskincomputervisionandhasbeenextensivelyresearchedovertheyears.Traditionalsegmentationmethodsoftenrelyonlow-levelfeatures,suchascolor,texture,orgradient,whichmaynotalwayscapturethedesiredobjectboundariesaccurately.Toaddressthislimitation,incorporatinghigh-levelshapepriorinformationintothesegmentationprocesshasgainedincreasingattention. 2.RelatedWork Manypreviousstudieshaveexploredtheuseofshapepriorsforimagesegmentation.Themostcommonlyusedapproachesincludeactivecontours,levelsets,andMarkovrandomfields.Whilethesemethodshaveshownpromisingresults,theirrelianceonspecificinitializationandthehighcomputationalcomplexitylimittheirpracticalapplications.Motivatedbytheseissues,weproposeanovelmethodthatcombinestheadvantagesofgraphcutalgorithmsandshapepriorstoachievemoreaccurateandefficientimagesegmentation. 3.ShapePriorGuidedGraphCut Ourproposedmethodconsistsofthreemainsteps:shapepriorextraction,graphconstruction,andgraphcutoptimization.Firstly,theshapepriorsareextractedfromasetoftrainingimagesorlearnedfromaseparatedatasetusingtechniquessuchasprincipalcomponentanalysis(PCA)orGaussianmixturemodels(GMM).Theshapepriorscapturethetypicalobjectshapesandtheirvariations,al