预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

河西走廊东部大雾气候特征及预报方法研究(英文) ResearchonClimaticCharacteristicsandForecastingMethodsofHeavyFogintheEasternHexiCorridor Abstract: TheHexiCorridorisanimportanteconomicandtransportationhubinthenorthwestregionofChina.TheeasternpartoftheHexiCorridorischaracterizedbyheavyfog,whichseriouslyaffectstrafficsafetyandeconomicdevelopment.Therefore,itisofgreatpracticalsignificancetostudytheclimaticcharacteristicsandforecastingmethodsofheavyfoginthisarea.BasedonthemeteorologicaldataoftheeasternHexiCorridorfrom1960to2019,thisstudyanalyzedthetemporalandspatialdistributioncharacteristicsofheavyfog,exploredtheinfluencingfactors,andproposedacorrespondingforecastingmethodtoprovidereliablescientificsupportforregionaleconomicdevelopmentandtrafficsafety. Keywords:EasternHexiCorridor,heavyfog,climaticcharacteristics,forecastingmethods Introduction: TheHexiCorridorisanimportantpassageforancientcivilizationsinEastAsiatocommunicatewiththeWesternRegionsandCentralAsia.Itisalsoastrategiclocationforthedevelopmentofmoderntransportationandeconomy.Asanaturalhubfortheconvergenceofmoistairfromthesoutheastanddryairfromthenorthwest,theHexiCorridorispronetoheavyfog,especiallyintheeasternpartofthecorridor,whichhasavastplainandrelativelyhighairhumidity.Heavyfoghascausedseriousroadtrafficaccidentsandeconomiclossesinthisarea.Therefore,itisnecessarytoconductacomprehensivestudyontheclimaticcharacteristicsandforecastingmethodsofheavyfoginthisregion. 1.Dataandmethods ThemeteorologicaldatausedinthisstudywereobtainedfromtheNationalMeteorologicalInformationCenterdatabasefrom1960to2019.Theheavyfogdaywasdefinedasthedailyvisibilitylessthan200meters.Theclimaticcharacteristicsofheavyfogwereanalyzedbystatisticalmethodssuchasfrequencyanalysis,trendanalysis,correlationanalysisandprincipalcomponentanalysis.Theinfluencingfactorsofheavyfogwereanalyzedbycorrelationanalysisandregressionanalysis.Basedontheaboveanalysis,ahybridforecastingmodelcombiningARIMAandBPneuralnetworkwasestablished. 2.Spatialandtemporaldistributioncharacteristics