预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

改进量子行为粒子群算法智能组卷策略研究 Title:ResearchonImprovedQuantum-InspiredParticleSwarmOptimizationforIntelligentTestAssemblyStrategy Abstract: Inrecentyears,thedevelopmentofcomputer-basedintelligenttestassemblyhasgainedsignificantattentioninthefieldofeducation.Thispaperaimstoproposeanimprovedquantum-inspiredparticleswarmoptimization(QPSO)algorithmforefficientlysolvingtheintelligenttestassemblyproblem.Theresearchfocusesonenhancingtheconvergencerateandsearchcapabilityofthetraditionalparticleswarmoptimization(PSO)algorithmthroughtheintegrationofquantumbehaviorandprinciples.TheexperimentalresultsdemonstratetheeffectivenessandsuperiorityoftheproposedQPSOalgorithmincomparisontotraditionalPSOalgorithms.Thisstudyprovidesvaluableinsightsfordevelopingintelligenttestassemblystrategiesineducationalassessmentsystems. 1.Introduction Intelligenttestassemblyisacrucialtaskineducationalassessment,whichinvolvesselectingappropriateitemstoformatesttoevaluatetheknowledgeandabilitiesofstudents.Withtheincreasingdemandforpersonalizededucation,thetraditionalmanualtestassemblyapproachhasbecomeinefficientandtime-consuming.Hence,thereisaneedforautomatedapproachestoimprovethequality,fairness,andefficiencyoftestassembly. 2.LiteratureReview Thissectionprovidesanoverviewofexistingapproachestointelligenttestassembly.Variousmethods,suchasgeneticalgorithms(GA),simulatedannealing(SA),andPSO,havebeenappliedtosolvetheproblem.However,traditionalPSOalgorithmsfacechallengesinachievingoptimalsolutionsduetotheirlimitedexplorationandexploitationabilities. 3.Quantum-InspiredParticleSwarmOptimization ThissectionintroducestheprinciplesofquantummechanicsthatprovidethefoundationfortheQPSOalgorithm.Thebasicconceptsofsuperposition,entanglement,andquantumgatesareexplained,alongwithhowtheyareincorporatedintothePSOalgorithm.Theadaptationofparticlepositionsandvelocitiesbasedonquantumprinciplesenhancesthesearchcapabilityandconvergencerateofthealgorithm. 4.ImprovementStrategies ThissectionproposesseveralimprovementstrategiesfortheQPSOa