预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

弹性机翼阵风响应减缓神经-模糊控制律研究及实验分析(英文) ResearchandExperimentalAnalysisofNeural-FuzzyControlLawforMitigatingGustResponseofElasticWings Abstract: Elasticwingshavebeenusedtoimprovetheaerodynamicperformanceofaircraftsduetotheirabilitytodeformandadapttovaryingflightconditions.However,thesewingsaremoresusceptibletogusts,whichcancausesignificantvibrationsandaffectthestabilityoftheaircraft.Inthispaper,aneural-fuzzycontrollawisproposedtomitigatethegustresponseofelasticwings.Thecontrollawisdesignedtoadjustthecontrolsurfacedeflectioninreal-timebasedonthegustintensityandthewing'sdeformation. Awindtunnelexperimentwasconductedtoevaluatetheeffectivenessoftheproposedcontrollaw.Theexperimentinvolvedascaledmodelofanelasticwingwithacontrolsurfaceattachedtothetrailingedge.Thewingwassubjectedtoaseriesofgustswithvaryingintensities.Theresultsshowedthattheproposedcontrollaweffectivelyreducedthewing'sresponsetogusts.Thecontrollawwasfoundtoberobusttodifferentgustprofilesandprovidedbetterperformancethanaconventionalproportional-integral-derivative(PID)controller. Introduction: Elasticwingshavebeenincreasinglyusedinaircraftdesignduetotheirabilitytoadapttodifferentflightconditions,whichallowsforimprovedaerodynamicefficiencyandreducedfuelconsumption.However,elasticwingsaremoresusceptibletogusts,whichcancausesignificantvibrationsthatcanleadtoinstabilityandstructuraldamage.Theresponseofelasticwingstogustsiscomplex,andtraditionalcontrolmethodssuchasproportional-integral-derivative(PID)controllersmaynotbeeffectiveinreducingthevibrations. Toaddressthisproblem,thispaperproposesaneural-fuzzycontrollawthatcanmitigatethegustresponseofelasticwings.Thecontrollawisdesignedtoadjustthecontrolsurfacedeflectioninreal-timebasedonthegustintensityandthewing'sdeformation.Thecontrollawisimplementedusinganeural-fuzzysystem,whichhastheadvantagesofbothfuzzylogicandneuralnetworks.Thefuzzylogicsystemprovidesatransparentandintuitiveapproachtocontrol,whiletheneuralnetworkprovidestheabilitytolearnfromdataandadapttochangingconditions