预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

应用双支持向量回归机的风速预测模型 Title:WindSpeedPredictionModelusingDualSupportVectorRegression Abstract: Windspeedpredictionplaysacrucialroleinvariousindustries,includingwindenergyproduction,weatherforecasting,anddisastermanagement.Accuratewindspeedpredictioncanoptimizetheefficiencyofwindturbines,improveenergyyieldplanning,andenhancetheoverallsafetyandoperationalmanagementofvariousactivities.Inthispaper,weproposeaWindSpeedPredictionModelusingDualSupportVectorRegression(DSVR)toimprovetheaccuracyofwindspeedpredictions.DSVRcombinestheadaptabilityofsupportvectorregression(SVR)andtherobustnessofdual-kernelSVMtocreateapowerfulpredictiontool.Themodelistrainedusinghistoricalwindspeeddataandmeteorologicalparametersasinput,enablingaccuratepredictionsofwindspeedsindifferentenvironmentalconditions. 1.Introduction Windspeedpredictionholdssignificantimportanceinmultiplesectorsduetoitsimpactonvariousactivities,includingrenewableenergygeneration,aviation,agriculture,andurbanplanning.Traditionalpredictionmodelslikestatisticalmethodsandnumericalweatherpredictionmodelshaveshownlimitationsintermsofaccuracyandadaptability.Therefore,thereisaneedforadvancedpredictionmodelsthatcanaccuratelyforecastwindspeedsinreal-time. 2.Methodology 2.1SupportVectorRegression(SVR) SupportVectorRegressionisavariantofSupportVectorMachines(SVMs)introducedforregressiontasks.Itaimstofindtheoptimalhyperplanethatmaximizesthemarginaroundthetrainingdatapoints.SVRmapstheinputdataintoahigher-dimensionalfeaturespaceusingakernelfunctionandthenusesalinearregressionmodeltoestimatetherelationshipbetweentheinputvariablesandthetargetvariable. 2.2DualSupportVectorRegression(DSVR) DSVRextendstheSVRmodelbyincorporatingadual-kernelapproach.Itcombinestheadvantagesofbothlinearandnon-linearkernelfunctions,allowingimprovedoptimizationperformanceincomplexpredictiontasks.Thedual-kernelSVMassignsdifferentkernelstodifferentsetsofsupportvectors,enhancingthemodel'scapabilitytocapturebothlinearandnon-linearrelationshipsinthedata. 3.DataPreprocessing B