预览加载中,请您耐心等待几秒...
1/4
2/4
3/4
4/4

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

多渐消因子Kalman滤波器在SINS初始对准中的应用(英文) Abstract TheinitialalignmentofSINS(strapdowninertialnavigationsystem)isafundamentalprocessinthenavigationsystem.AsacriticalcomponentoftheSINSinitialalignment,theKalmanfilterhasbeenwidelyusedduetoitsremarkableperformanceinreducingmeasurementnoiseandestimationerrors.However,traditionalKalmanfiltersuffersfromtheissueofdivergenceunderhighdynamicconditions.Toaddressthisproblem,themulti-fadingfactorKalmanfilter(MFFKF)isproposedinthispaper.TheMFFKFcaneffectivelyeliminatetheinfluenceofhighdynamicconditionsontheSINSinitialalignment.ThesimulationresultsshowthattheproposedMFFKFcontributestoanaccurateandrobustSINSinitialalignment. Introduction TheSINSisanessentialnavigationsysteminwhichaccelerometersandgyroscopesareusedtomeasuretheinertialmotionoftheplatformtoprovidenavigationparameterssuchasposition,velocity,andattitudeangles.TheSINSconsistsoftwostages:initializationandalignmentstageandnavigationstage.Theinitializationandalignmentstageistoaligntheinitialattitudeangles,gyroandaccelerometererrors,whilethenavigationstageistotrackandstoretheSINSoutputparametersandcorrecttheerrorscausedbytheinputandtheenvironment.TheSINSshouldbeaccuratelyandreliablyalignedbeforestartingnavigation.Otherwise,theSINSoutputparameterswillbeunreliable. TheinitialalignmentoftheSINSisnecessarytodeterminetheinitialattitudeangles,gyroandaccelerometererrors.ItisacriticalprocessintheSINS,anditsaccuracyandreliabilitydirectlyaffecttheaccuracyofnavigationresults.Therefore,itisnecessarytominimizetheerrorsduringtheinitialalignmentprocess. ThetraditionalKalmanfilteriswidelyusedintheSINSinitialalignmentbecauseofitshighaccuracyandreliability.However,underhighdynamicconditions,thetraditionalKalmanfiltermaydiverge,resultinginunsatisfactoryalignmentresults.Therefore,itisnecessarytofurtherexploretheimprovementoftheKalmanfiltertosolvethedivergenceproblem. Inthispaper,themulti-fadingfactorKalmanfilterisproposedtoaddressthedivergenceproblemofthetraditionalKalmanfilter.TheMFFKFcaneffectivelyeli